Liang Jingjing, Tan Weixiong, Xie Shijia, Zheng Lijuan, Li Chuyan, Zhong Yi, Li Jianrui, Zhou Changsheng, Zhang Zhiqiang, Zhou Zhen, Gong Ping, Chen Xingzhi, Zhang Longjiang, Cheng Xiaoqing, Zhang Qirui, Lu Guangming
Department of Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
Department of Radiology, Lu'an Hospital of Anhui Medical University, Lu'an, China.
Neuroradiology. 2025 Jun 3. doi: 10.1007/s00234-025-03661-7.
The location of the hemorrhagic of spontaneous intracerebral hemorrhage (sICH) is clinically pivotal for both identifying its etiology and prognosis, but comprehensive and quantitative modeling approach has yet to be thoroughly explored.
We employed lesion-symptom mapping to extract the location features of sICH. We registered patients' non-contrast computed tomography image and hematoma masks with standard human brain templates to identify specific affected brain regions. Then, we generated hemorrhage probabilistic maps of different etiologies and prognoses. By integrating radiomics and clinical features into multiple logistic regression models, we developed and validated optimal etiological and prognostic models across three centers, comprising 1162 sICH patients.
Hematomas of different etiology have unique spatial distributions. The location-based features demonstrated robust classification of the etiology of spontaneous intracerebral hemorrhage (sICH), with a mean area under the curve (AUC) of 0.825 across diverse datasets. These features provided significant incremental value when integrated into predictive models (fusion model mean AUC = 0.915), outperforming models relying solely on clinical features (mean AUC = 0.828). In prognostic assessments, both hematoma location (mean AUC = 0.762) and radiomic features (mean AUC = 0.837) contributed substantial incremental predictive value, as evidenced by the fusion model's mean AUC of 0.873, compared to models utilizing clinical features alone (mean AUC = 0.771).
Our results show that location features were more intrinsically robust, generalizable relative, strong interpretability to the complex modeling of radiomics, our approach demonstrated a novel interpretable, streamlined, comprehensive etiologic classification and prognostic prediction framework for sICH.
自发性脑出血(sICH)出血部位对于病因识别及预后判断均具有临床关键意义,但全面且定量的建模方法尚未得到充分探索。
我们采用病变-症状映射来提取sICH的位置特征。将患者的非增强计算机断层扫描图像及血肿掩码与标准人脑模板进行配准,以识别特定的受累脑区。然后,我们生成了不同病因及预后的出血概率图。通过将放射组学和临床特征整合到多个逻辑回归模型中,我们在三个中心开发并验证了包含1162例sICH患者的最佳病因及预后模型。
不同病因的血肿具有独特的空间分布。基于位置的特征对自发性脑出血(sICH)病因具有强大的分类能力,在不同数据集中曲线下面积(AUC)均值为0.825。这些特征在整合到预测模型中时提供了显著的增量价值(融合模型平均AUC = 0.915),优于仅依赖临床特征的模型(平均AUC = 0.828)。在预后评估中,血肿位置(平均AUC = 0.762)和放射组学特征(平均AUC = 0.83)均贡献了显著的增量预测价值,融合模型平均AUC为0.873,相比仅使用临床特征的模型(平均AUC = 0.771)。
我们的结果表明,位置特征本质上更稳健、相对可推广、对放射组学复杂建模具有较强的可解释性,我们的方法展示了一种新颖的、可解释的、简化的、全面的sICH病因分类及预后预测框架。