Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NCL, Pune, 411 008, India.
International Centre for Genetic Engineering & Biotechnology (ICGEB), Aruna Asif Ali Marg, New Delhi, 100 067, India.
Eur J Med Chem. 2021 Aug 5;220:113454. doi: 10.1016/j.ejmech.2021.113454. Epub 2021 Apr 14.
Artemisinin-based combination therapies (ACTs) have been able to reduce the clinical and pathological malaria cases in endemic areas around the globe. However, recent reports have shown a progressive decline in malaria parasite clearance in South-east Asia after ACT treatment, thus envisaging a need for new artemisinin (ART) derivatives and combinations. To address the emergence of drug resistance to current antimalarials, here we report the synthesis of artemisinin-peptidyl vinyl phosphonate hybrid molecules that show superior efficacy than artemisinin alone against chloroquine-resistant as well as multidrug-resistant Plasmodium falciparum strains with EC in pico-molar ranges. Further, the compounds effectively inhibited the survival of ring-stage parasite for laboratory-adapted artemisinin-resistant parasite lines as compared to artemisinin. These hybrid molecules showed complete parasite clearance in vivo using P. berghei mouse malaria model in comparison to artemisinin alone. Studies on the mode of action of hybrid molecules suggested that these artemisinin-peptidyl vinyl phosphonate hybrid molecules possessed dual activities: inhibited falcipain-2 (FP-2) activity, a P. falciparum cysteine protease involved in hemoglobin degradation, and also blocked the hemozoin formation in the food-vacuole, a step earlier shown to be blocked by artemisinin. Since these hybrid molecules blocked multiple steps of a pathway and showed synergistic efficacies, we believe that these lead compounds can be developed as effective antimalarials to prevent the spread of resistance to current antimalarials.
基于青蒿素的联合疗法 (ACT) 已经能够减少全球流行地区的临床和病理疟疾病例。然而,最近的报告显示,在东南亚,青蒿素类药物(ART)治疗后疟原虫清除率逐渐下降,因此需要新的青蒿素衍生物和联合用药。为了解决当前抗疟药物耐药性的出现,我们在这里报告了青蒿素-肽基乙烯膦酸酯混合分子的合成,这些混合分子在纳摩尔范围内对氯喹耐药和多药耐药的恶性疟原虫菌株的疗效优于青蒿素单独使用。此外,与青蒿素相比,这些化合物能有效抑制实验室适应的青蒿素耐药虫株的环体期寄生虫的存活。与青蒿素单独使用相比,这些混合分子在 P. 伯氏疟原虫小鼠疟疾模型中能完全清除寄生虫。对混合分子作用机制的研究表明,这些青蒿素-肽基乙烯膦酸酯混合分子具有双重活性:抑制恶性疟原虫半胱氨酸蛋白酶 FP-2 的活性,该酶参与血红蛋白的降解,同时也阻止血红素在食物泡中的形成,这一步骤先前被证明被青蒿素所阻断。由于这些混合分子阻断了一个途径的多个步骤,并显示出协同作用,我们相信这些先导化合物可以开发为有效的抗疟药物,以防止当前抗疟药物耐药性的传播。