Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485, Butlerova 5A, Moscow, Russia.
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485, Butlerova 5A, Moscow, Russia.
Biochem Biophys Res Commun. 2021 Jun 18;558:64-70. doi: 10.1016/j.bbrc.2021.04.061. Epub 2021 Apr 23.
Long-term potentiation (LTP) and long-term depression (LTD) are key forms of synaptic plasticity in the hippocampus. LTP and LTD are believed to underlie the processes occurring during learning and memory. Search of mechanisms responsible for switching from LTP to LTD and vice versa is an important fundamental task. Protein synthesis blockers (PSB) are widely used in models of memory impairment and LTP suppression. Here, we found that blockade of serine/threonine phosphatases 1 (PP1) and 2A (PP2A) with the specific blockers, calyculin A (CalyA) or okadaic acid (OA), and simultaneous blockade of the protein translation by anisomycin or cycloheximide leads to a switch from PSB-impaired LTP to LTD. PP1/PP2A-dependent LTD was extremely sensitive to the intensity of the test stimuli, whose increase restored the field excitatory postsynaptic potentials (fEPSP) to the values corresponding to control LTP in the non-treated slices. PP1/PP2A blockade affected the basal synaptic transmission, increasing the paired-pulse facilitation (PPF) ratio, and restored the PSB-impaired PPF 3 h after tetanus. Prolonged exposure to anisomycin led to the NO synthesis increase (measured using fluorescent dye) both in the dendrites and somata of CA1, CA3, dentate gyrus (DG) hippocampal layers. OA partially prevented the NO production in the CA1 dendrites, as well in the CA3 and DG somas. Direct measurements of changes in serine/threonine phosphatase (STPP) activity revealed importance of the PP1/PP2A-dependent component in the late LTP phase (L-LTP) in anisomycin-treated slices. Thus, serine/threonine phosphatases PP1/PP2A influence both basal synaptic transmission and stimulation-induced synaptic plasticity.
长时程增强(LTP)和长时程抑制(LTD)是海马体中突触可塑性的主要形式。LTP 和 LTD 被认为是学习和记忆过程中发生的过程的基础。寻找从 LTP 到 LTD 转换的机制以及相反的机制是一个重要的基础任务。蛋白合成抑制剂(PSB)广泛用于记忆障碍和 LTP 抑制模型中。在这里,我们发现使用特异性抑制剂 calyculin A(CalyA)或 okadaic acid(OA)阻断丝氨酸/苏氨酸磷酸酶 1(PP1)和 2A(PP2A),以及同时用 anisomycin 或 cycloheximide 阻断蛋白翻译,导致 PSB 损伤的 LTP 向 LTD 的转换。PP1/PP2A 依赖性 LTD 对测试刺激的强度极其敏感,增加刺激强度可使场兴奋性突触后电位(fEPSP)恢复到未经处理切片中对照 LTP 的对应值。PP1/PP2A 阻断作用影响基础突触传递,增加成对脉冲易化(PPF)比值,并在四氢唑啉后 3 小时恢复 PSB 损伤的 PPF。长时间暴露于 anisomycin 会导致 CA1、CA3、齿状回(DG)海马层的树突和胞体中一氧化氮合成增加(使用荧光染料测量)。OA 部分阻止了 CA1 树突中以及 CA3 和 DG 胞体中的 NO 产生。丝氨酸/苏氨酸磷酸酶(STPP)活性的直接测量揭示了在 anisomycin 处理的切片中,PP1/PP2A 依赖性成分在晚期 LTP 相(L-LTP)中的重要性。因此,丝氨酸/苏氨酸磷酸酶 PP1/PP2A 影响基础突触传递和刺激诱导的突触可塑性。