Suppr超能文献

群体感应抑制剂呋喃酮 C-30 在实验进化过程中迅速失去对铜绿假单胞菌生物膜的妥布霉素增效活性。

The Quorum-Sensing Inhibitor Furanone C-30 Rapidly Loses Its Tobramycin-Potentiating Activity against Pseudomonas aeruginosa Biofilms during Experimental Evolution.

机构信息

Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium.

出版信息

Antimicrob Agents Chemother. 2021 Jun 17;65(7):e0041321. doi: 10.1128/AAC.00413-21.

Abstract

The use of quorum-sensing inhibitors (QSI) has been proposed as an alternative strategy to combat antibiotic resistance. QSI reduce the virulence of a pathogen without killing it and it is claimed that resistance to such compounds is less likely to develop, although there is a lack of experimental data supporting this hypothesis. Additionally, such studies are often carried out in conditions that do not mimic the situation. In the present study, we evaluated whether a combination of the QSI furanone C-30 and the aminoglycoside antibiotic tobramycin would be "evolution-proof" when used to eradicate Pseudomonas aeruginosa biofilms grown in a synthetic cystic fibrosis sputum medium. We found that the biofilm-eradicating activity of the tobramycin/furanone C-30 combination already decreased after 5 treatment cycles. The antimicrobial susceptibility of P. aeruginosa to tobramycin decreased 8-fold after 16 cycles of treatment with the tobramycin/furanone C-30 combination. Furthermore, microcalorimetry revealed changes in the metabolic activity of P. aeruginosa exposed to furanone C-30, tobramycin, and the combination. Whole-genome sequencing analysis of the evolved strains exposed to the combination identified mutations in , , and , genes known to be involved in antibiotic resistance. In P. aeruginosa treated with furanone C-30 alone, a deletion in was also observed. Our data indicate that furanone C-30 is not "evolution-proof" and quickly becomes ineffective as a tobramycin potentiator.

摘要

群体感应抑制剂 (QSI) 的使用被提议作为一种对抗抗生素耐药性的替代策略。QSI 降低病原体的毒力而不杀死它,据称,对这种化合物的耐药性不太可能发展,尽管缺乏支持这一假设的实验数据。此外,此类研究通常在不模拟情况的条件下进行。在本研究中,我们评估了群体感应抑制剂呋喃酮 C-30 和氨基糖苷类抗生素妥布霉素的组合在用于根除在合成囊性纤维化痰培养基中生长的铜绿假单胞菌生物膜时是否“进化证明”。我们发现,妥布霉素/呋喃酮 C-30 组合的生物膜消除活性在 5 次治疗循环后已经降低。妥布霉素/呋喃酮 C-30 组合治疗 16 个周期后,铜绿假单胞菌对妥布霉素的抗菌敏感性降低了 8 倍。此外,微量热法揭示了暴露于呋喃酮 C-30、妥布霉素和组合的铜绿假单胞菌代谢活性的变化。暴露于组合的进化菌株的全基因组测序分析鉴定出参与抗生素耐药性的 、 和 基因中的突变。在单独用呋喃酮 C-30 处理的铜绿假单胞菌中,还观察到 基因缺失。我们的数据表明,呋喃酮 C-30 并非“进化证明”,并且很快作为妥布霉素增效剂变得无效。

相似文献

3
A Pseudomonas aeruginosa PQS quorum-sensing system inhibitor with anti-staphylococcal activity sensitizes polymicrobial biofilms to tobramycin.
Cell Chem Biol. 2022 Jul 21;29(7):1187-1199.e6. doi: 10.1016/j.chembiol.2022.02.007. Epub 2022 Mar 7.
5
Association of furanone C-30 with biofilm formation & antibiotic resistance in .
Indian J Med Res. 2018 Apr;147(4):400-406. doi: 10.4103/ijmr.IJMR_2010_16.
6
Can the quorum sensing inhibitor resveratrol function as an aminoglycoside antibiotic accelerant against Pseudomonas aeruginosa?
Int J Antimicrob Agents. 2018 Jul;52(1):35-41. doi: 10.1016/j.ijantimicag.2018.03.002. Epub 2018 Mar 9.
7
Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo.
Antimicrob Agents Chemother. 2011 Jun;55(6):2655-61. doi: 10.1128/AAC.00045-11. Epub 2011 Mar 21.
8
Extracellular DNA release, quorum sensing, and PrrF1/F2 small RNAs are key players in tobramycin-enhanced biofilm formation.
NPJ Biofilms Microbiomes. 2019 May 23;5(1):15. doi: 10.1038/s41522-019-0088-3. eCollection 2019.
9
A New PqsR Inverse Agonist Potentiates Tobramycin Efficacy to Eradicate Pseudomonas aeruginosa Biofilms.
Adv Sci (Weinh). 2021 Jun;8(12):e2004369. doi: 10.1002/advs.202004369. Epub 2021 Mar 18.
10
Assessing the Molecular Targets and Mode of Action of Furanone C-30 on Quorum Sensing.
Molecules. 2021 Mar 15;26(6):1620. doi: 10.3390/molecules26061620.

引用本文的文献

1
Anti-QS Strategies Against Infections.
Microorganisms. 2025 Aug 7;13(8):1838. doi: 10.3390/microorganisms13081838.
3
Diversity-Oriented Synthesis and Antibiofilm Evaluation of Furan-2-Carboxamides.
ChemMedChem. 2025 May 5;20(9):e202400879. doi: 10.1002/cmdc.202400879. Epub 2025 Jan 31.
5
Using next generation antimicrobials to target the mechanisms of infection.
NPJ Antimicrob Resist. 2023;1(1):11. doi: 10.1038/s44259-023-00011-6. Epub 2023 Sep 22.
6
3D-printed wound dressings containing a fosmidomycin-derivative prevent biofilm formation.
iScience. 2023 Aug 7;26(9):107557. doi: 10.1016/j.isci.2023.107557. eCollection 2023 Sep 15.
8
Biofilm antimicrobial susceptibility through an experimental evolutionary lens.
NPJ Biofilms Microbiomes. 2022 Oct 18;8(1):82. doi: 10.1038/s41522-022-00346-4.
9
Mechanisms of Inhibition of Quorum Sensing as an Alternative for the Control of and .
Microorganisms. 2022 Apr 23;10(5):884. doi: 10.3390/microorganisms10050884.

本文引用的文献

3
The role of small proteins in J2315 biofilm formation, persistence and intracellular growth.
Biofilm. 2019 Jun 15;1:100001. doi: 10.1016/j.bioflm.2019.100001. eCollection 2019 Dec.
4
Effective antimicrobial combination in vivo treatment predicted with microcalorimetry screening.
J Antimicrob Chemother. 2021 Mar 12;76(4):1001-1009. doi: 10.1093/jac/dkaa543.
6
Global reprogramming of virulence and antibiotic resistance in by a single nucleotide polymorphism in elongation factor, .
J Biol Chem. 2020 Nov 27;295(48):16411-16426. doi: 10.1074/jbc.RA119.012102. Epub 2020 Sep 17.
7
Bacterial signaling as an antimicrobial target.
Curr Opin Microbiol. 2020 Oct;57:78-86. doi: 10.1016/j.mib.2020.08.001. Epub 2020 Sep 8.
9
Parallel Evolution of Tobramycin Resistance across Species and Environments.
mBio. 2020 May 26;11(3):e00932-20. doi: 10.1128/mBio.00932-20.
10
Antimicrobial Resistance in ESKAPE Pathogens.
Clin Microbiol Rev. 2020 May 13;33(3). doi: 10.1128/CMR.00181-19. Print 2020 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验