Eklund K K, Vuorinen J, Mikkola J, Virtanen J A, Kinnunen P K
Department of Membrane Physics, KSV Research Laboratories, Helsinki, Finland.
Biochemistry. 1988 May 3;27(9):3433-7. doi: 10.1021/bi00409a046.
Phase separation in mixed monolayers of phosphatidylcholine (PC) and pyrene-labeled phosphatidic acid (PA) was observed by fluorescence microscopy on an air/water interface as a function of subphase Ca2+ concentration and lateral packing pressure of the film. Below 45 mN m-1 and in the absence of Ca2+ no indications of phase immiscibility were observed. Addition of 1 mM Ca2+ caused extensive phase separation, which was evident immediately after spreading of the film. Further increase in Ca2+ concentration up to 30 mM increased the pyrene excimer intensity of the separated phosphatidic acid enriched domains. In the presence of Ca2+ (1-30 mM) and at surface pressures below 10 mN m-1 phase separation was always evident. However, as surface pressure exceeded 10 mN m-1, mixing of PC and PA occurred. Upon decompression of the film, phase separation reappeared at surface pressures close to 10 mN m-1. The surface textures of the film before and after the compression and subsequent relaxation were different. Inclusion of 30 mol% cholesterol increased the number and decreased the size of the PA domains. In films containing 50 mol% cholesterol no phase separation could be detected at the resolution available.