Suppr超能文献

解析偶然爆裂音的时相特征以进行听诊和分类:一种机器学习方法。

Unwrapping the phase portrait features of adventitious crackle for auscultation and classification: a machine learning approach.

机构信息

Department of Optoelectronics, University of Kerala, Trivandrum, Kerala, 695581, India.

出版信息

J Biol Phys. 2021 Jun;47(2):103-115. doi: 10.1007/s10867-021-09567-8. Epub 2021 Apr 27.

Abstract

The paper delves into the plausibility of applying fractal, spectral, and nonlinear time series analyses for lung auscultation. The thirty-five sound signals of bronchial (BB) and pulmonary crackle (PC) analysed by fast Fourier transform and wavelet not only give the details of number, nature, and time of occurrence of the frequency components but also throw light onto the embedded air flow during breathing. Fractal dimension, phase portrait, and sample entropy help in divulging the greater randomness, antipersistent nature, and complexity of airflow dynamics in BB than PC. The potential of principal component analysis through the spectral feature extraction categorises BB, fine crackles, and coarse crackles. The phase portrait feature-based supervised classification proves to be better compared to the unsupervised machine learning technique. The present work elucidates phase portrait features as a better choice of classification, as it takes into consideration the temporal correlation between the data points of the time series signal, and thereby suggesting a novel surrogate method for the diagnosis in pulmonology. The study suggests the possible application of the techniques in the auscultation of coronavirus disease 2019 seriously affecting the respiratory system.

摘要

本文探讨了将分形、谱和非线性时间序列分析应用于肺部听诊的可能性。通过快速傅里叶变换和小波分析的 35 个支气管(BB)和肺部爆裂音(PC)的声音信号不仅提供了频率分量的数量、性质和出现时间的详细信息,还揭示了呼吸过程中嵌入的气流。分形维数、相图和样本熵有助于揭示 BB 中气流动力学的更大随机性、反持续性和复杂性,而不是 PC。通过谱特征提取的主成分分析的潜力对 BB、细爆裂音和粗爆裂音进行分类。基于相图特征的监督分类证明比无监督机器学习技术更好。本工作阐明了相图特征作为分类的更好选择,因为它考虑了时间序列信号中数据点之间的时间相关性,从而为肺病诊断提供了一种新的替代方法。该研究表明,这些技术可能应用于听诊严重影响呼吸系统的 2019 年冠状病毒病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cf6/8185108/9fcff81f76d7/10867_2021_9567_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验