Deegan Meaghan M, Bhattacharjee Rameswar, Caratzoulas Stavros, Bloch Eric D
Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States.
Catalysis Center for Energy Innovation (CCEI), University of Delaware, Newark, Delaware 19716, United States.
Inorg Chem. 2021 May 17;60(10):7044-7050. doi: 10.1021/acs.inorgchem.0c03590. Epub 2021 Apr 27.
The number of studies concerning the permanent porosity of molecular materials, especially porous organic cages (POCs) and porous coordination cages (PCCs), have increased substantially over the past decade. The work presented here outlines novel approaches to the preparation of porous molecular structures upon metalation of nonporous, amine-based organic cages. Reduction of the well-known CC3 and CC1 imine-based POCs affords nonporous, highly flexible amine cages. These materials can be endowed with significant levels of structural rigidity post-synthetic metalation of their ethylenediamine-type binding pockets. The hybrid metal-organic cages accessed through this approach combine aspects of POC and PCC chemistry, with structures of this type providing a potentially promising new direction for the design and development of porous molecular materials with tunability in overall charge, metal cation, porosity, and solubility.
在过去十年中,关于分子材料,特别是多孔有机笼(POCs)和多孔配位笼(PCCs)的永久孔隙率的研究数量大幅增加。本文介绍的工作概述了在无孔的胺基有机笼金属化后制备多孔分子结构的新方法。还原著名的基于CC3和CC1亚胺的POCs可得到无孔、高度灵活的胺笼。这些材料在其乙二胺型结合口袋进行合成后金属化后可具有显著水平的结构刚性。通过这种方法获得的杂化金属有机笼结合了POC和PCC化学的各方面,这种类型的结构为设计和开发在总电荷、金属阳离子、孔隙率和溶解度方面具有可调性的多孔分子材料提供了一个潜在的有前景的新方向。