Suppr超能文献

在 CT 容积中桥接 2D 和 3D 上下文以进行肝脏和肿瘤分割。

Bridging the Gap Between 2D and 3D Contexts in CT Volume for Liver and Tumor Segmentation.

出版信息

IEEE J Biomed Health Inform. 2021 Sep;25(9):3450-3459. doi: 10.1109/JBHI.2021.3075752. Epub 2021 Sep 3.

Abstract

Automatic liver and tumor segmentation remain a challenging topic, which subjects to the exploration of 2D and 3D contexts in CT volume. Existing methods are either only focus on the 2D context by treating the CT volume as many independent image slices (but ignore the useful temporal information between adjacent slices), or just explore the 3D context lied in many little voxels (but damage the spatial detail in each slice). These factors lead an inadequate context exploration together for automatic liver and tumor segmentation. In this paper, we propose a novel full-context convolution neural network to bridge the gap between 2D and 3D contexts. The proposed network can utilize the temporal information along the Z axis in CT volume while retaining the spatial detail in each slice. Specifically, a 2D spatial network for intra-slice features extraction and a 3D temporal network for inter-slice features extraction are proposed separately and then are guided by the squeeze-and-excitation layer that allows the flow of 2D context and 3D temporal information. To address the severe class imbalance issue in the CT volume and meanwhile improve the segmentation performance, a loss function consisting of weighted cross-entropy and jaccard distance is proposed. During the network training, the 2D and 3D contexts are learned jointly in an end-to-end way. The proposed network achieves competitive results on the Liver Tumor Segmentation Challenge (LiTS) and the 3D-IRCADB datasets. This method should be a new promising paradigm to explore the contexts for liver and tumor segmentation.

摘要

自动肝脏和肿瘤分割仍然是一个具有挑战性的课题,需要探索 CT 体数据中的 2D 和 3D 上下文。现有的方法要么只关注 2D 上下文,将 CT 体数据视为许多独立的图像切片(但忽略了相邻切片之间有用的时间信息),要么只探索存在于许多小体素中的 3D 上下文(但破坏了每个切片中的空间细节)。这些因素共同导致对自动肝脏和肿瘤分割的上下文探索不足。在本文中,我们提出了一种新的全上下文卷积神经网络,以弥合 2D 和 3D 上下文之间的差距。所提出的网络可以利用 CT 体数据中沿 Z 轴的时间信息,同时保留每个切片中的空间细节。具体而言,分别提出了一个用于切片内特征提取的 2D 空间网络和一个用于切片间特征提取的 3D 时间网络,然后由挤压激励层引导,允许 2D 上下文和 3D 时间信息的流动。为了解决 CT 体数据中严重的类不平衡问题,同时提高分割性能,提出了一种由加权交叉熵和杰卡德距离组成的损失函数。在网络训练过程中,2D 和 3D 上下文以端到端的方式共同学习。所提出的网络在肝脏肿瘤分割挑战赛(LiTS)和 3D-IRCADB 数据集上取得了有竞争力的结果。该方法应该是探索肝脏和肿瘤分割上下文的一种新的有前途的范例。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验