Suppr超能文献

基于边缘引导的多尺度自适应特征融合网络的肝脏肿瘤分割。

Edge-guided multi-scale adaptive feature fusion network for liver tumor segmentation.

机构信息

School of Digital and Intelligent Industry, Inner Mongolia University of Science & Technology, Baotou, 014010, China.

出版信息

Sci Rep. 2024 Nov 17;14(1):28370. doi: 10.1038/s41598-024-79379-y.

Abstract

Automated segmentation of liver tumors on CT scans is essential for aiding diagnosis and assessing treatment. Computer-aided diagnosis can reduce the costs and errors associated with manual processes and ensure the provision of accurate and reliable clinical assessments. However, liver tumors in CT images vary significantly in size and have fuzzy boundaries, making it difficult for existing methods to achieve accurate segmentation. Therefore, this paper proposes MAEG-Net, a multi-scale adaptive feature fusion liver tumor segmentation network based on edge guidance. Specifically, we design a multi-scale adaptive feature fusion module that effectively incorporates multi-scale information to better guide the segmentation of tumors of different sizes. Additionally, to address the problem of blurred tumor boundaries in images, we introduce an edge-aware guidance module to improve the model's feature learning ability under these conditions. Evaluation results on the liver tumor dataset (LiTS2017) show that our method achieves a Dice coefficient of 71.84% and a VOE of 38.64%, demonstrating the best performance for liver tumor segmentation in CT images.

摘要

CT 扫描上肝脏肿瘤的自动分割对于辅助诊断和评估治疗至关重要。计算机辅助诊断可以降低与手动流程相关的成本和错误,并确保提供准确可靠的临床评估。然而,CT 图像中的肝脏肿瘤在大小上差异很大,并且边界模糊,使得现有方法难以实现准确的分割。因此,本文提出了 MAEG-Net,这是一种基于边缘引导的多尺度自适应特征融合肝脏肿瘤分割网络。具体来说,我们设计了一个多尺度自适应特征融合模块,有效地结合了多尺度信息,以更好地指导不同大小的肿瘤分割。此外,为了解决图像中肿瘤边界模糊的问题,我们引入了一个边缘感知引导模块,以提高模型在这些条件下的特征学习能力。在肝脏肿瘤数据集(LiTS2017)上的评估结果表明,我们的方法在 CT 图像上肝脏肿瘤分割的 Dice 系数达到 71.84%,VOE 达到 38.64%,表现出最佳性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a33/11570674/7325850fab94/41598_2024_79379_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验