Suppr超能文献

基于机器学习的个性化丘脑底核生物标志物可预测帕金森病患者的左旋多巴开-关状态。

Machine learning-based personalized subthalamic biomarkers predict ON-OFF levodopa states in Parkinson patients.

作者信息

Sand Daniel, Rappel Pnina, Marmor Odeya, Bick Atira S, Arkadir David, Lu Bao-Liang, Bergman Hagai, Israel Zvi, Eitan Renana

机构信息

Department of Medical Neurobiology (Physiology), Institute of Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.

The Edmond and Lily Safra Center for Brain Research, The Hebrew University, Jerusalem, Israel.

出版信息

J Neural Eng. 2021 May 17;18(4). doi: 10.1088/1741-2552/abfc1d.

Abstract

Adaptive deep brain stimulation (aDBS) based on subthalamic nucleus (STN) electrophysiology has recently been proposed to improve clinical outcomes of DBS for Parkinson's disease (PD) patients. Many current models for aDBS are based on one or two electrophysiological features of STN activity, such as beta or gamma activity. Although these models have shown interesting results, we hypothesized that an aDBS model that includes many STN activity parameters will yield better clinical results. The objective of this study was to investigate the most appropriate STN neurophysiological biomarkers, detectable over long periods of time, that can predict OFF and ON levodopa states in PD patients.Long-term local field potentials (LFPs) were recorded from eight STNs (four PD patients) during 92 recording sessions (44 OFF and 48 ON levodopa states), over a period of 3-12 months. Electrophysiological analysis included the power of frequency bands, band power ratio and burst features. A total of 140 engineered features was extracted for 20 040 epochs (each epoch lasting 5 s). Based on these engineered features, machine learning (ML) models classified LFPs as OFF vs ON levodopa states.Beta and gamma band activity alone poorly predicts OFF vs ON levodopa states, with an accuracy of 0.66 and 0.64, respectively. Group ML analysis slightly improved prediction rates, but personalized ML analysis, based on individualized engineered electrophysiological features, were markedly better, predicting OFF vs ON levodopa states with an accuracy of 0.8 for support vector machine learning models.We showed that individual patients have unique sets of STN neurophysiological biomarkers that can be detected over long periods of time. ML models revealed that personally classified engineered features most accurately predict OFF vs ON levodopa states. Future development of aDBS for PD patients might include personalized ML algorithms.

摘要

基于丘脑底核(STN)电生理学的适应性深部脑刺激(aDBS)最近被提出用于改善帕金森病(PD)患者深部脑刺激的临床效果。当前许多aDBS模型基于STN活动的一两个电生理特征,如β或γ活动。尽管这些模型已显示出有趣的结果,但我们推测,包含多个STN活动参数的aDBS模型将产生更好的临床效果。本研究的目的是调查最合适的、可长时间检测到的STN神经生理生物标志物,其能够预测PD患者的左旋多巴关期和开期状态。在3至12个月的时间里,对8个STN(4例PD患者)进行了92次记录(44次左旋多巴关期和48次左旋多巴开期),记录长期局部场电位(LFP)。电生理分析包括频段功率、频段功率比和爆发特征。共为20040个时段(每个时段持续5秒)提取了140个工程特征。基于这些工程特征,机器学习(ML)模型将LFP分类为左旋多巴关期与开期状态。单独的β和γ频段活动对左旋多巴关期与开期状态的预测效果较差,准确率分别为0.66和0.64。群体ML分析略微提高了预测率,但基于个体化工程电生理特征的个性化ML分析明显更好,支持向量机学习模型对左旋多巴关期与开期状态的预测准确率为0.8。我们表明,个体患者具有可长时间检测到的独特STN神经生理生物标志物集。ML模型显示,个性化分类的工程特征最准确地预测了左旋多巴关期与开期状态。未来针对PD患者的aDBS开发可能包括个性化ML算法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验