Hancock Edward J, Krycer James R, Ang Jordan
School of Mathematics and Statistics, Sydney, 2006, Australia.
Charles Perkins Centre, The University of Sydney, Sydney, 2006, Australia.
J R Soc Interface. 2021 Apr;18(177):20200976. doi: 10.1098/rsif.2020.0976. Epub 2021 Apr 28.
Determining the underlying principles behind biological regulation is important for understanding the principles of life, treating complex diseases and creating de novo synthetic biology. Buffering-the use of reservoirs of molecules to maintain molecular concentrations-is a widespread and important mechanism for biological regulation. However, a lack of theory has limited our understanding of its roles and quantified effects. Here, we study buffering in energy metabolism using control theory and novel buffer analysis. We find that buffering can enable the simultaneous, independent control of multiple coupled outputs. In metabolism, adenylate kinase and AMP deaminase enable simultaneous control of ATP and adenylate energy ratios, while feedback on metabolic pathways is fundamentally limited to controlling one of these outputs. We also quantify the regulatory effects of the phosphagen system-the above buffers and creatine kinase-revealing which mechanisms regulate which outputs. The results are supported by human muscle and mouse adipocyte data. Together, these results illustrate the synergy of feedback and buffering in molecular biology to simultaneously control multiple outputs.
确定生物调节背后的基本原理对于理解生命原理、治疗复杂疾病以及创建全新的合成生物学至关重要。缓冲——利用分子库来维持分子浓度——是一种广泛且重要的生物调节机制。然而,理论的缺乏限制了我们对其作用和量化效应的理解。在此,我们运用控制理论和新颖的缓冲分析方法研究能量代谢中的缓冲现象。我们发现缓冲能够实现对多个耦合输出的同时、独立控制。在新陈代谢中,腺苷酸激酶和AMP脱氨酶能够同时控制ATP和腺苷酸能量比,而对代谢途径的反馈从根本上仅限于控制这些输出中的一个。我们还量化了磷酸原系统(上述缓冲剂和肌酸激酶)的调节作用,揭示了哪些机制调节哪些输出。这些结果得到了人类肌肉和小鼠脂肪细胞数据的支持。总之,这些结果说明了分子生物学中反馈和缓冲在同时控制多个输出方面的协同作用。