Suppr超能文献

自然语言处理在集成医疗保健系统中识别静脉血栓栓塞症的性能。

Natural Language Processing Performance for the Identification of Venous Thromboembolism in an Integrated Healthcare System.

机构信息

2456Loyola University Chicago, Undergraduate Education, Chicago, IL, USA.

University of Colorado Health Sciences Center, Office of Human Research, Aurora, CO, USA.

出版信息

Clin Appl Thromb Hemost. 2021 Jan-Dec;27:10760296211013108. doi: 10.1177/10760296211013108.

Abstract

Real-time identification of venous thromboembolism (VTE), defined as deep vein thrombosis (DVT) and pulmonary embolism (PE), can inform a healthcare organization's understanding of these events and be used to improve care. In a former publication, we reported the performance of an electronic medical record (EMR) interrogation tool that employs natural language processing (NLP) of imaging studies for the diagnosis of venous thromboembolism. Because we transitioned from the legacy electronic medical record to the Cerner product, iCentra, we now report the operating characteristics of the NLP EMR interrogation tool in the new EMR environment. Two hundred randomly selected patient encounters for which the imaging report assessed by NLP that revealed VTE was present were reviewed. These included one hundred imaging studies for which PE was identified. These included computed tomography pulmonary angiography-CTPA, ventilation perfusion-V/Q scan, and CT angiography of the chest/ abdomen/pelvis. One hundred randomly selected comprehensive ultrasound (CUS) that identified DVT were also obtained. For comparison, one hundred patient encounters in which PE was suspected and imaging was negative for PE (CTPA or V/Q) and 100 cases of suspected DVT with negative CUS as reported by NLP were also selected. Manual chart review of the 400 charts was performed and we report the sensitivity, specificity, positive and negative predictive values of NLP compared with manual chart review. NLP and manual review agreed on the presence of PE in 99 of 100 cases, the presence of DVT in 96 of 100 cases, the absence of PE in 99 of 100 cases and the absence of DVT in all 100 cases. When compared with manual chart review, NLP interrogation of CUS, CTPA, CT angiography of the chest, and V/Q scan yielded a sensitivity = 93.3%, specificity = 99.6%, positive predictive value = 97.1%, and negative predictive value = 99%.

摘要

实时识别静脉血栓栓塞症(VTE),定义为深静脉血栓形成(DVT)和肺栓塞(PE),可以帮助医疗机构了解这些事件,并用于改善医疗服务。在之前的一篇出版物中,我们报告了一种电子病历(EMR)查询工具的性能,该工具使用自然语言处理(NLP)对影像研究进行分析,以诊断静脉血栓栓塞症。由于我们从传统的电子病历过渡到 Cerner 产品 iCentra,因此我们现在报告了在新的电子病历环境中 NLP EMR 查询工具的操作特性。随机选择了 200 份由 NLP 评估的影像报告显示存在 VTE 的患者就诊记录进行了回顾。其中包括 100 份经 NLP 诊断为 PE 的影像研究。这些影像研究包括 CT 肺动脉造影(CTPA)、通气灌注(V/Q)扫描和胸部/腹部/骨盆 CT 血管造影。还随机选择了 100 份经 NLP 报告为 DVT 的全面超声(CUS)。为了进行比较,还选择了 100 份疑似 PE 且影像检查为阴性(CTPA 或 V/Q)的患者就诊记录和 100 份疑似 DVT 且 NLP 报告为阴性的患者就诊记录。对 400 份图表进行了手动图表审查,并报告了 NLP 与手动图表审查相比的敏感性、特异性、阳性和阴性预测值。NLP 和手动审查在 100 例病例中均同意存在 PE,在 100 例病例中均同意存在 DVT,在 100 例病例中均同意不存在 PE,在所有 100 例病例中均同意不存在 DVT。与手动图表审查相比,对 CUS、CTPA、胸部 CT 血管造影和 V/Q 扫描的 NLP 查询的敏感性为 93.3%,特异性为 99.6%,阳性预测值为 97.1%,阴性预测值为 99%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8205/8107936/879e10a55d49/10.1177_10760296211013108-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验