Suppr超能文献

大鼠中超痕量水平铋的金属生物化学 II. Bi 与组织、细胞内和分子成分的相互作用。

Metallobiochemistry of ultratrace levels of bismuth in the rat II. Interaction of Bi with tissue, intracellular and molecular components.

机构信息

Center for Advanced Studies and Technology (C.A.S.T.), "G. d'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11, Chieti, I-66100, Italy; LASA, Department of Physics, Università Degli Studi di Milano and INFN-Milano, Via F.lli Cervi 201, Segrate, MI, I-20090, Italy.

Department of Physics, Università Degli Studi di Milano, Via Celoria 16, Milano, I-20133, Italy; LASA, Department of Physics, Università Degli Studi di Milano and INFN-Milano, Via F.lli Cervi 201, Segrate, MI, I-20090, Italy.

出版信息

J Trace Elem Med Biol. 2021 Dec;68:126752. doi: 10.1016/j.jtemb.2021.126752. Epub 2021 Apr 20.

Abstract

BACKGROUND

Knowledge on Bi metabolism in laboratory animals refers to studies at "extreme" exposures, i.e. pharmacologically relevant high-doses (mg kg b.w.) in relation to its medical use, or infinitesimal doses (pg kgb.w.) concerning radiobiology protection and radiotherapeutic purposes. There are no specific studies on metabolic patterns of environmental exposure doses (ultratrace level, μg kg b.w.), becoming in this context Bi a "heavy metal fallen into oblivion". We previously reported the results of the metabolic fate of ultratrace levels of Bi in the blood of rats [1]. In reference to the same study here we report the results of the retention and tissue binding of Bi with intracellular and molecular components.

METHODS

Animals were intraperitoneally injected with 0.8 μg Bi kg b.w. as Bi(NO), alone or in combination with Fe for the radiolabeling of iron proteins. The use of Bi radiotracer allowed the determination of Bi down to pg fg in biological fluids, tissues, subcellular fractions, and biochemical components isolated by differential centrifugation, size exclusion chromatography, solvent extraction, precipitation, immunoprecipitation and dialysis.

MAIN FINDINGS

At 24 h post injection the kidney contained by far the highest Bi concentration (10 ng g wt.w.) followed by the thymus, spleen, liver, thyroid, trachea, femur, lung, adrenal gland, stomach, duodenum and pancreas (0.1 to 1.3 ng g wt.w.). Brain and testis showed smaller but consistently significant concentrations of the element (0.03 ng g wt.w). Urine was the predominant route of excretion. Intracellularly, liver, kidney, spleen, testis, and brain cytosols displayed the highest percentages (35%-58%) of Bi of homogenates. Liver and testis nuclei were the organelles with the highest Bi content (24 % and 27 %). However, when the recovered Bi of the liver was recorded as percent of total recovered Bi divided by percent of total recovered protein the lysosomes showed the highest relative specific activity than in other fractions. In the brain subcellular fractions Bi was incorporated by neuro-structures with the protein and not lipidic fraction of the myelin retaining 18 % of Bi of the total homogenate. After the liver intra-subcellular fractionation: (i) 65 % of the nuclear Bi was associated with the protein fraction of the nuclear membranes and 35 % with the bulk chromatin bound to non-histone and DNA fractions; (ii) about 50 % of the mitochondrial Bi was associated with inner and outer membranes being the other half recovered in the intramitochondrial matrix; (iii) in microsomes Bi showed a high affinity (close to 90 %) for the membranous components (rough and smooth membranes); (iv) In the liver cytosol three pools of Bi-binding proteins (molecular size > 300 kDa, 70 kDa and 10 kDa) were observed with ferritin and metallothionein-like protein identified as Bi-binding biomolecules. Three similar protein pools were also observed in the kidney cytosol. However, the amount of Bi, calculated in percent of the total cytosolic Bi, were significantly different compared to the corresponding pools of the liver cytosol.

CONCLUSIONS

At the best of our knowledge the present paper represents the first in vivo study, on the basis of an environmental toxicology approach, aiming at describing retention and binding of Bi in the rat at tissue, intracellular and molecular levels.

摘要

背景

实验室动物的铋代谢知识是指在“极端”暴露下的研究,即在医学用途方面涉及药理学相关的高剂量(mg/kg 体重),或者在放射生物学保护和放射治疗方面涉及微剂量(pg/kg 体重)。关于环境暴露剂量(超痕量水平,μg/kg 体重)的代谢模式,目前尚无具体研究,这使得铋在这种情况下成为一种“被遗忘的重金属”。我们之前报道了大鼠血液中超痕量水平铋的代谢命运的结果[1]。在参考同一研究的基础上,我们报告了铋在体内的保留和组织结合与细胞内和分子成分的结果。

方法

动物通过腹腔内注射 0.8μg/kg 体重的 Bi(NO3)3,单独或与 Fe 结合作为铁蛋白的放射性标记物。使用铋放射性示踪剂可以在生物体液、组织、亚细胞部分和通过差速离心、排阻层析、溶剂萃取、沉淀、免疫沉淀和透析分离的生化成分中,将铋的含量测定到 pg fg 水平。

主要发现

在注射后 24 小时,肾脏中铋的浓度最高(10ng/g 湿重),其次是胸腺、脾脏、肝脏、甲状腺、气管、股骨、肺、肾上腺、胃、十二指肠和胰腺(0.1 至 1.3ng/g 湿重)。大脑和睾丸也显示出较小但始终显著的元素浓度(0.03ng/g 湿重)。尿液是主要的排泄途径。细胞内,肝脏、肾脏、脾脏、睾丸和大脑胞浆显示出匀浆中最高百分比(35%-58%)的铋。肝脏和睾丸核是含铋量最高的细胞器(24%和 27%)。然而,当肝脏中回收的铋记录为总回收铋除以总回收蛋白的百分比时,溶酶体显示出比其他部分更高的相对比活性。在大脑亚细胞部分中,铋被神经结构所包含,与髓磷脂的蛋白质和脂质部分结合,保留了总匀浆中 18%的铋。在肝脏亚细胞部分分离后:(i)核中 65%的铋与核膜的蛋白质部分结合,35%与与非组蛋白和 DNA 部分结合的染色质结合;(ii)约 50%的线粒体铋与内外膜结合,另一半则存在于线粒体内基质中;(iii)在微粒体中,铋对膜成分(粗糙和光滑膜)表现出高亲和力(接近 90%);(iv)在肝脏胞浆中,观察到三种铋结合蛋白池(分子量>300kDa、70kDa 和 10kDa),铁蛋白和金属硫蛋白样蛋白被鉴定为铋结合生物分子。在肾脏胞浆中也观察到了三种类似的蛋白池。然而,与肝脏胞浆的相应池相比,计算的铋在总胞浆铋中的百分比差异显著。

结论

据我们所知,本文代表了第一篇基于环境毒理学方法的体内研究,旨在描述铋在大鼠组织、细胞内和分子水平上的保留和结合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验