Suppr超能文献

大鼠中超痕量水平铋的金属生物化学。I. 血液中 Bi 的代谢模式。

Metallobiochemistry of ultratrace levels of bismuth in the rat I. Metabolic patterns of Bi in the blood.

机构信息

Center for Advanced Studies and Technology (C.A.S.T.), "G. d'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11, Chieti, I-66100, Italy; LASA, Department of Physics, Università Degli Studi di Milano and INFN-Milano, Via F.lli Cervi 201, Segrate, MI, I-20090, Italy.

Department of Physics, Università Degli Studi di Milano, Via Celoria 16, Milano, I-20133, Italy; LASA, Department of Physics, Università Degli Studi di Milano and INFN-Milano, Via F.lli Cervi 201, Segrate, MI, I-20090, Italy.

出版信息

J Trace Elem Med Biol. 2021 Dec;68:126760. doi: 10.1016/j.jtemb.2021.126760. Epub 2021 Apr 14.

Abstract

BACKGROUND

The number of the applications of bismuth (Bi) is rapidly and remarkably increasing, enhancing the chance to increase the levels to which humans are normally daily exposed. The interest to Bi comes also from the potential of Bi-based nanoparticles (BiNPs) for industrial and biomedical purposes. Like other metal-based NPs used in nanomedicine, BiNPs may release ultratrace amounts of Bi ions when injected. The metabolic fate and toxicity of these ions still needs to be evaluated. At present, knowledge of Bi metabolism in laboratory animals refers almost solely to studies under unnatural "extreme" exposures, i.e. pharmacologically relevant high-doses (up to thousand mg kg) in relation to its medical use, or infinitesimal-doses (pg kg as non-carrier-added Bi radioisotopes) for radiobiology protection, diagnostic and radiotherapeutic purposes. No specific study exists on the "metabolic patterns" in animal models exposed to levels of Bi, i.e. at "environmental dose exposure" that reflect the human daily exposure (μg kg).

METHODOLOGY

Rats were intraperitoneally injected with 0.8 μg Bi kg bw as Bi(NO) alone or in combination with Fe for radiolabelling of iron proteins. The use of Bi radiotracers allowed the detection and measurement down to pg fg of the element in the blood biochemical compartments and protein fractions as isolated by differential centrifugation, size exclusion- and ion exchange chromatography, electrophoresis, solvent extraction, precipitation and dialysis.

RESULTS

24 h after the administration, the blood concentration of Bi was 0.18 ng mL, with a repartition plasma/red blod cells (RBC) in a ratio of 2:1. Elution profiles of plasma from gel filtration on Sephadex G-150 showed four pools of Bi-binder proteins with different molecular sizes (> 300 kDa, 160 kDa, 70 kDa and < 6.5 kDa). In the 70 kDa fraction transferrin and albumin were identified as biomolecule carriers for Bi. In red blood cells, Bi was distributed between cytosol and membranes (ghosts) in a ratio of about 5:1. In the cytosol, low molecular components (LMWC) and the hemoglobin associated the Bi in a ratio of about 1.8:1. In the hemoglobin molecule, Bi was bound to the beta polypeptide chain of the globin. In the ghosts, Bi was detected at more than one site of the protein fraction, with no binding with lipids. Dialysis experiments and the consistently high recovery (80-90 %) of Bi from chromatography of Bi-containing biocomponents suggest that Bi was firmly complexed at physiological pH with a low degree of breaking during the applications of experimental protocols for the isolation of the Bi-biocomplexes. These latter were sensitive to acid buffer pH 5, and to the presence of complexing agents in the dialysis fluid.

CONCLUSIONS

On the basis of an environmental biochemical toxicology approach, we have undertaken a study on the metabolic patterns of Bi ions in rats at tissue, subcellular and molecular level with the identification of cellular Bi-binding components. As a first part of the study the present work reports the results concerned with the metabolic fate of ultratrace levels of Bi(NO) in the blood.

摘要

背景

铋(Bi)的应用数量正在迅速显著增加,这增加了人类日常暴露于铋的水平的可能性。人们对铋的兴趣也来自于基于铋的纳米粒子(BiNPs)在工业和生物医学方面的应用潜力。与纳米医学中使用的其他基于金属的 NPs 一样,BiNPs 在注射时可能会释放出痕量的 Bi 离子。这些离子的代谢命运和毒性仍需要进行评估。目前,实验室动物中铋代谢的知识几乎完全是基于非自然的“极端”暴露研究得出的,即在医学用途中与药理学相关的高剂量(高达千毫克/千克),或者用于放射生物学保护、诊断和放射治疗目的的微剂量(作为非载体添加的 Bi 放射性同位素的 pg 千克)。对于暴露于铋水平的动物模型中的“代谢模式”,即反映人类日常暴露(μg 千克)的“环境剂量暴露”,尚无特定的研究。

方法

大鼠经腹腔注射 0.8μg Bi kg bw 作为 Bi(NO),单独或与 Fe 一起用于铁蛋白的放射性标记。使用 Bi 放射性示踪剂可以在血液生化成分和通过差速离心、分子筛和离子交换层析、电泳、溶剂萃取、沉淀和透析分离的蛋白质级分中检测和测量低至 pg fg 的元素。

结果

给药后 24 小时,血液中的 Bi 浓度为 0.18ng mL,血浆/红细胞(RBC)的分布比为 2:1。Sephadex G-150 凝胶过滤后血浆的洗脱图谱显示 Bi 结合蛋白有四个不同的分子大小池(>300kDa、160kDa、70kDa 和<6.5kDa)。在 70kDa 级分中,转铁蛋白和白蛋白被鉴定为 Bi 的生物分子载体。在红细胞中,Bi 在细胞质和膜(红细胞)之间以约 5:1 的比例分布。在细胞质中,低分子成分(LMWC)和与血红蛋白结合的 Bi 比例约为 1.8:1。在血红蛋白分子中,β多肽链上有 Bi 结合。在红细胞中,在蛋白质级分的多个部位检测到 Bi,与脂质没有结合。透析实验和从含有 Bi 的生物成分的色谱中回收 Bi 的一致高回收率(80-90%)表明,在分离 Bi-生物复合物的实验方案应用过程中,Bi 在生理 pH 下与低程度的断裂牢固地与复合物结合。这些复合物对酸性缓冲液 pH5 和透析液中的络合剂敏感。

结论

基于环境生物化学毒理学方法,我们在组织、亚细胞和分子水平上对大鼠体内铋离子的代谢模式进行了研究,并鉴定了细胞内铋结合成分。作为研究的第一部分,本工作报告了与血液中超痕量 Bi(NO)代谢命运有关的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验