Systems Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain 08036.
Systems Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain 08036
J Neurosci. 2021 Jun 9;41(23):5029-5044. doi: 10.1523/JNEUROSCI.1837-20.2021. Epub 2021 Apr 27.
Quantitative estimations of spatiotemporal complexity of cortical activity patterns are used in the clinic as a measure of consciousness levels, but the cortical mechanisms involved are not fully understood. We used a version of the perturbational complexity index (PCI) adapted to multisite recordings from the ferret (either sex) cerebral cortex (sPCI) to investigate the role of GABAergic inhibition in cortical complexity. We studied two dynamical states: slow-wave activity (synchronous state) and desynchronized activity, that express low and high causal complexity respectively. Progressive blockade of GABAergic inhibition during both regimes revealed its impact on the emergent cortical activity and on sPCI. Gradual GABA receptor blockade resulted in higher synchronization, being able to drive the network from a desynchronized to a synchronous state, with a progressive decrease of complexity (sPCI). Blocking GABA receptors also resulted in a reduced sPCI, in particular when in a synchronous, slow wave state. Our findings demonstrate that physiological levels of inhibition contribute to the generation of dynamical richness and spatiotemporal complexity. However, if inhibition is diminished or enhanced, cortical complexity decreases. Using a computational model, we explored a larger parameter space in this relationship and demonstrate a link between excitatory/inhibitory balance and the complexity expressed by the cortical network. The spatiotemporal complexity of the activity expressed by the cerebral cortex is a highly revealing feature of the underlying network's state. Complexity varies with physiological brain states: it is higher during awake than during sleep states. But it also informs about pathologic states: in disorders of consciousness, complexity is lower in an unresponsive wakefulness syndrome than in a minimally conscious state. What are the network parameters that modulate complexity? Here we investigate how inhibition, mediated by either GABA or GABA receptors, influences cortical complexity. And we do this departing from two extreme functional states: a highly synchronous, slow-wave state, and a desynchronized one that mimics wakefulness. We find that there is an optimal level of inhibition in which complexity is highest.
皮质活动模式时空复杂性的定量估计被用于临床,作为意识水平的衡量标准,但涉及的皮质机制尚不完全清楚。我们使用一种经过改良的、适用于从雪貂(无论雌雄)大脑皮质进行多点记录的扰动复杂性指数(PCI)版本(sPCI),来研究 GABA 能抑制在皮质复杂性中的作用。我们研究了两种动力学状态:慢波活动(同步状态)和去同步活动,它们分别表现出低和高的因果复杂性。在这两种状态下,逐渐阻断 GABA 能抑制作用,揭示了其对涌现的皮质活动和 sPCI 的影响。逐渐阻断 GABA 受体导致更高的同步性,能够使网络从去同步状态转变为同步状态,同时复杂性(sPCI)逐渐降低。阻断 GABA 受体也会导致 sPCI 降低,尤其是在同步的慢波状态下。我们的发现表明,生理水平的抑制有助于产生动态丰富性和时空复杂性。然而,如果抑制减弱或增强,皮质复杂性就会降低。我们使用计算模型在这个关系中探索了更大的参数空间,并证明了兴奋性/抑制性平衡与皮质网络表达的复杂性之间的联系。大脑皮质表达的活动的时空复杂性是潜在网络状态的一个非常有启发性的特征。复杂性随生理脑状态而变化:在清醒状态下比在睡眠状态下更高。但它也反映了病理状态:在意识障碍中,无反应性觉醒综合征的复杂性低于最小意识状态。调节复杂性的网络参数是什么?在这里,我们研究 GABA 或 GABA 受体介导的抑制作用如何影响皮质复杂性。我们从两种极端功能状态出发:高度同步的慢波状态和模拟清醒的去同步状态。我们发现存在一个最佳的抑制水平,在此水平下复杂性最高。