Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China.
Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
mBio. 2021 Apr 27;12(2):e00613-21. doi: 10.1128/mBio.00613-21.
Unlike nucleobase modifications in canonical restriction-modification systems, DNA phosphorothioate (PT) epigenetic modification occurs in the DNA sugar-phosphate backbone when the nonbridging oxygen is replaced by sulfur in a double-stranded (ds) or single-stranded (ss) manner governed by DndABCDE or SspABCD, respectively. SspABCD coupled with SspE constitutes a defense barrier in which SspE depends on sequence-specific PT modifications to exert its antiphage activity. Here, we identified a new type of ssDNA PT-based SspABCD-SspFGH defense system capable of providing protection against phages through a mode of action different from that of SspABCD-SspE. We provide further evidence that SspFGH damages non-PT-modified DNA and exerts antiphage activity by suppressing phage DNA replication. Despite their different defense mechanisms, SspFGH and SspE are compatible and pair simultaneously with one SspABCD module, greatly enhancing the protection against phages. Together with the observation that the cassette is widely distributed in bacterial genomes, this study highlights the diversity of PT-based defense barriers and expands our knowledge of the arsenal of phage defense mechanisms. We recently found that SspABCD, catalyzing single-stranded (ss) DNA phosphorothioate (PT) modification, coupled with SspE provides protection against phage infection. SspE performs both PT-simulated NTPase and DNA-nicking nuclease activities to damage phage DNA, rendering SspA-E a PT-sensing defense system. To our surprise, ssDNA PT modification can also pair with a newly identified 3-gene cassette to fend off phage infection with a different mode of action from that of SspE. Interestingly, both SspFGH and SspE can pair with the same SspABCD module for antiphage defense, and their combination provides JM109 with additive phage resistance up to 10-fold compared to that for either barrier alone. This agrees with our observation that SspFGH and SspE coexist in 36 bacterial genomes, highlighting the diversity of the gene contents and molecular mechanisms of PT-based defense systems.
与经典限制修饰系统中的核碱基修饰不同,DNA 硫代磷酸酯 (PT) 表观遗传修饰发生在 DNA 糖磷酸骨架中,当双链 (ds) 或单链 (ss) 中的非桥接氧被硫取代时,分别由 DndABCDE 或 SspABCD 控制。SspABCD 与 SspE 一起构成了一个防御屏障,其中 SspE 依赖于序列特异性的 PT 修饰来发挥其抗噬菌体活性。在这里,我们鉴定了一种新的 ssDNA 基于 PT 的 SspABCD-SspFGH 防御系统,该系统能够通过不同于 SspABCD-SspE 的作用模式提供针对噬菌体的保护。我们提供了进一步的证据表明,SspFGH 会破坏非 PT 修饰的 DNA,并通过抑制噬菌体 DNA 复制来发挥抗噬菌体活性。尽管它们的防御机制不同,但 SspFGH 和 SspE 是兼容的,并且同时与一个 SspABCD 模块配对,大大增强了对噬菌体的保护。此外,观察到 盒广泛分布在细菌基因组中,这项研究强调了基于 PT 的防御屏障的多样性,并扩展了我们对噬菌体防御机制的认识。我们最近发现,催化单链 (ss) DNA 硫代磷酸酯 (PT) 修饰的 SspABCD 与 SspE 一起提供了针对噬菌体感染的保护。SspE 同时具有 PT 模拟 NTPase 和 DNA 切口核酸酶活性,以破坏噬菌体 DNA,使 SspA-E 成为一种 PT 感应防御系统。令我们惊讶的是,ssDNA PT 修饰也可以与新鉴定的 3 基因 盒配对,以与 SspE 不同的作用模式抵御噬菌体感染。有趣的是,SspFGH 和 SspE 都可以与相同的 SspABCD 模块配对进行抗噬菌体防御,并且它们的组合使 JM109 的噬菌体抗性比单独使用任何一种屏障增加了 10 倍。这与我们的观察结果一致,即 SspFGH 和 SspE 共存于 36 个细菌基因组中,突出了基于 PT 的防御系统的基因内容和分子机制的多样性。