Suppr超能文献

l-半胱氨酸脱硫酶的结构分析来自 Ssp DNA 硫代磷酸化系统。

Structural Analysis of an l-Cysteine Desulfurase from an Ssp DNA Phosphorothioation System.

机构信息

State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China.

Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.

出版信息

mBio. 2020 Apr 28;11(2):e00488-20. doi: 10.1128/mBio.00488-20.

Abstract

DNA phosphorothioate (PT) modification, in which the nonbridging oxygen in the sugar-phosphate backbone is substituted by sulfur, is catalyzed by DndABCDE or SspABCD in a double-stranded or single-stranded manner, respectively. In Dnd and Ssp systems, mobilization of sulfur in PT formation starts with the activation of the sulfur atom of cysteine catalyzed by the DndA and SspA cysteine desulfurases, respectively. Despite playing the same biochemical role, SspA cannot be functionally replaced by DndA, indicating its unique physiological properties. In this study, we solved the crystal structure of SspA in complex with its natural substrate, cysteine, and cofactor, pyridoxal phosphate (PLP), at a resolution of 1.80 Å. Our solved structure revealed the molecular mechanism that SspA employs to recognize its cysteine substrate and PLP cofactor, suggesting a common binding mode shared by cysteine desulfurases. In addition, although the distance between the catalytic Cys314 and the substrate cysteine is 8.9 Å, which is too far for direct interaction, our structural modeling and biochemical analysis revealed a conformational change in the active site region toward the cysteine substrate to move them close to each other to facilitate the nucleophilic attack. Finally, the pulldown analysis showed that SspA could form a complex with SspD, an ATP pyrophosphatase, suggesting that SspD might potentially accept the activated sulfur atom directly from SspA, providing further insights into the biochemical pathway of Ssp-mediated PT modification. Apart from its roles in Fe-S cluster assembly, tRNA thiolation, and sulfur-containing cofactor biosynthesis, cysteine desulfurase serves as a sulfur donor in the DNA PT modification, in which a sulfur atom substitutes a nonbridging oxygen in the DNA phosphodiester backbone. The initial sulfur mobilization from l-cysteine is catalyzed by the SspA cysteine desulfurase in the SspABCD-mediated DNA PT modification system. By determining the crystal structure of SspA, the study presents the molecular mechanism that SspA employs to recognize its cysteine substrate and PLP cofactor. To overcome the long distance (8.9 Å) between the catalytic Cys314 and the cysteine substrate, a conformational change occurs to bring Cys314 to the vicinity of the substrate, allowing for nucleophilic attack.

摘要

DNA 硫代磷酸酯 (PT) 修饰是指在糖磷酸骨架的非桥氧原子被硫取代,该修饰由 DndABCDE 或 SspABCD 分别以双链或单链的方式催化。在 Dnd 和 Ssp 系统中,PT 形成中的硫的迁移始于半胱氨酸的硫原子被 DndA 和 SspA 半胱氨酸脱硫酶分别催化激活。尽管具有相同的生化作用,但 SspA 不能被 DndA 功能替代,表明其具有独特的生理特性。在这项研究中,我们以 1.80 Å 的分辨率解析了 SspA 与其天然底物半胱氨酸和辅因子吡哆醛磷酸(PLP)形成复合物的晶体结构。我们的结构揭示了 SspA 识别其半胱氨酸底物和 PLP 辅因子的分子机制,表明半胱氨酸脱硫酶具有共同的结合模式。此外,尽管催化 Cys314 与底物半胱氨酸之间的距离为 8.9 Å,远不能直接相互作用,但我们的结构建模和生化分析揭示了活性位点区域朝向半胱氨酸底物的构象变化,使它们彼此靠近,以促进亲核攻击。最后,下拉分析表明 SspA 可以与 SspD(一种 ATP 焦磷酸酶)形成复合物,表明 SspD 可能直接从 SspA 接受活化的硫原子,为 Ssp 介导的 PT 修饰的生化途径提供了进一步的见解。除了在 Fe-S 簇组装、tRNA 硫代和含硫辅因子生物合成中的作用外,半胱氨酸脱硫酶还作为 DNA PT 修饰中的硫供体,其中一个硫原子取代 DNA 磷酸二酯骨架中的非桥氧原子。在 SspABCD 介导的 DNA PT 修饰系统中,SspA 半胱氨酸脱硫酶催化初始的 l-半胱氨酸中的硫动员。通过确定 SspA 的晶体结构,该研究提出了 SspA 识别其半胱氨酸底物和 PLP 辅因子的分子机制。为了克服催化 Cys314 与半胱氨酸底物之间的长距离(8.9 Å),构象发生变化,使 Cys314 靠近底物,从而进行亲核攻击。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65e8/7188994/689de2b4534e/mBio.00488-20-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验