Suppr超能文献

关于基因必需性与内含子结构的关系:一种计算和深度学习方法。

On the relation of gene essentiality to intron structure: a computational and deep learning approach.

机构信息

Stanford University, Stanford, CA, USA

Stanford University, Stanford, CA, USA.

出版信息

Life Sci Alliance. 2021 Apr 27;4(6). doi: 10.26508/lsa.202000951. Print 2021 Jun.

Abstract

Essential genes have been studied by copy number variants and deletions, both associated with introns. The premise of our work is that introns of essential genes have distinct characteristic properties. We provide support for this by training a deep learning model and demonstrating that introns alone can be used to classify essentiality. The model, limited to first introns, performs at an increased level, implicating first introns in essentiality. We identify unique properties of introns of essential genes, finding that their structure protects against deletion and intron-loss events, especially centered on the first intron. We show that GC density is increased in the first introns of essential genes, allowing for increased enhancer activity, protection against deletions, and improved splice site recognition. We find that first introns of essential genes are of remarkably smaller size than their nonessential counterparts, and to protect against common 3' end deletion events, essential genes carry an increased number of (smaller) introns. To demonstrate the importance of the seven features we identified, we train a feature-based model using only these features and achieve high performance.

摘要

必需基因的研究涉及到拷贝数变异和缺失,这两者都与内含子有关。我们工作的前提是必需基因的内含子具有独特的特征。我们通过训练深度学习模型并证明仅使用内含子就可以进行必需性分类来对此提供支持。该模型仅限于第一内含子,其性能得到提高,暗示第一内含子与必需性有关。我们确定了必需基因内含子的独特性质,发现它们的结构可以防止缺失和内含子丢失事件,特别是围绕第一内含子。我们表明,必需基因的第一内含子中的 GC 密度增加,从而可以增加增强子的活性,防止缺失,并改善剪接位点识别。我们发现,必需基因的第一内含子比非必需基因的内含子小得多,为了防止常见的 3'端缺失事件,必需基因携带更多(较小)的内含子。为了证明我们确定的七个特征的重要性,我们仅使用这些特征训练基于特征的模型,并取得了很高的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33a3/8127325/d8d3a7bd00f5/LSA-2020-00951_Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验