Suppr超能文献

基于生物医学指标数据:前列腺癌风险预测模型。

Based on biomedical index data: Risk prediction model for prostate cancer.

机构信息

School of Clinical Medicine, Bengbu Medical College.

Department of Epidemiology and Health Statistics, School of Public Health, Bengbu Medical College.

出版信息

Medicine (Baltimore). 2021 Apr 30;100(17):e25602. doi: 10.1097/MD.0000000000025602.

Abstract

To explore the influencing factors of prostate cancer occurrence, set up risk prediction model, require reference for the preliminary diagnosis of clinical doctors, this model searched database through the data of prostate cancer patients and prostate hyperplasia patients National Clinical Medical Science Data Center.With the help of Stata SE 12.0 and SPSS 25.0 software, the biases between groups were balanced by propensity score matching. Based on the matched data, the relevant factors were further screened by stepwise logistic regression analysis, the key variable and artificial neural network model are established. The prediction accuracy of the model is evaluated by combining the probability of test set with the area under receiver operating characteristic curve (ROC).After 1:2 PSM, 339 pairs were matched successfully. There are 159 cases in testing groups and 407 cases in training groups. And the regression model was P = 1 / (1 + e (0.122 ∗ age + 0.083 ∗ Apo lipoprotein C3 + 0.371 ∗ total prostate specific antigen (tPSA) -0.227 ∗ Apo lipoprotein C2-6.093 ∗ free calcium (iCa) + 0.428 ∗ Apo lipoprotein E-1.246 ∗ triglyceride-1.919 ∗ HDL cholesterol + 0.083 ∗ creatine kinase isoenzyme [CKMB])). The logistic regression model performed very well (ROC, 0.963; 95% confidence interval, 0.951 to 0.978) and artificial neural network model (ROC, 0.983; 95% confidence interval, 0.964 to 0.997). High degree of Apo lipoprotein E (Apo E) (Odds Ratio, [OR], 1.535) in blood test is a risk factor and high triglyceride (TG) (OR, 0.288) is a protective factor.It takes the biochemical examination of the case as variables to establish a risk prediction model, which can initially reflect the risk of prostate cancer and bring some references for diagnosis and treatment.

摘要

为了探索前列腺癌发生的影响因素,建立风险预测模型,为临床医生初步诊断提供参考,本研究通过国家临床医学科学数据中心的前列腺癌患者和前列腺增生患者的数据,利用 Stata SE 12.0 和 SPSS 25.0 软件进行数据库检索。采用倾向性评分匹配法平衡组间偏倚。基于匹配数据,进一步通过逐步逻辑回归分析筛选相关因素,建立关键变量和人工神经网络模型。通过测试集概率与受试者工作特征曲线(ROC)下面积相结合评估模型的预测准确性。经过 1:2 PSM,成功匹配了 339 对。测试组中有 159 例,训练组中有 407 例。回归模型为 P=1/(1+e(0.122年龄+0.083载脂蛋白 C3+0.371总前列腺特异抗原(tPSA)-0.227载脂蛋白 C2-6.093游离钙(iCa)+0.428载脂蛋白 E-1.246甘油三酯-1.919高密度脂蛋白胆固醇+0.083*肌酸激酶同工酶[CKMB])))。逻辑回归模型表现非常好(ROC,0.963;95%置信区间,0.951 至 0.978)和人工神经网络模型(ROC,0.983;95%置信区间,0.964 至 0.997)。血液检查中载脂蛋白 E(Apo E)水平高(优势比[OR],1.535)是一个危险因素,而甘油三酯(TG)水平高(OR,0.288)是一个保护因素。本研究以病例的生化检查为变量建立风险预测模型,可初步反映前列腺癌的风险,为诊断和治疗提供一些参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c11b/8084031/e0d8d2ef5892/medi-100-e25602-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验