Department of Pediatric Cardiology, Tokyo Women's Medical University Hospital, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-0054, Japan.
Institute of Advanced BioMedical Engineering and Science, Tokyo Women's Medical University, Tokyo, 162-0054, Japan.
Pediatr Cardiol. 2021 Aug;42(6):1379-1387. doi: 10.1007/s00246-021-02622-0. Epub 2021 Apr 27.
The heart murmur associated with atrial septal defects is often faint and can thus only be detected by chance. Although electrocardiogram examination can prompt diagnoses, identification of specific findings remains a major challenge. We demonstrate improved diagnostic accuracy realized by incorporating a proposed deep learning model, comprising a convolutional neural network (CNN) and long short-term memory (LSTM), with electrocardiograms. This retrospective observational study included 1192 electrocardiograms of 728 participants from January 1, 2000, to December 31, 2017, at Tokyo Women's Medical University Hospital. Using echocardiography, we confirmed the status of healthy subjects-no structural heart disease-and the diagnosis of atrial septal defects in patients. We used a deep learning model comprising a CNN and LTSMs. All pediatric cardiologists (n = 12) were blinded to patient groupings when analyzing them by electrocardiogram. Using electrocardiograms, the model's diagnostic ability was compared with that of pediatric cardiologists. We assessed 1192 electrocardiograms (828 normally structured hearts and 364 atrial septal defects) pertaining to 792 participants. The deep learning model results revealed that the accuracy, sensitivity, specificity, positive predictive value, and F1 score were 0.89, 0.76, 0.96, 0.88, and 0.81, respectively. The pediatric cardiologists (n = 12) achieved means of accuracy, sensitivity, specificity, positive predictive value, and F1 score of 0.58 ± 0.06, 0.53 ± 0.04, 0.67 ± 0.10, 0.69 ± 0.18, and 0.58 ± 0.06, respectively. The proposed method is a superior alternative to accurately diagnose atrial septal defects.
与房间隔缺损相关的心脏杂音通常很微弱,因此只能偶然发现。尽管心电图检查可以提示诊断,但确定具体发现仍然是一个主要挑战。我们展示了通过将一个包含卷积神经网络 (CNN) 和长短时记忆 (LSTM) 的深度学习模型与心电图相结合,提高了诊断准确性。这项回顾性观察性研究包括 2000 年 1 月 1 日至 2017 年 12 月 31 日期间在东京女子医科大学医院接受检查的 728 名参与者的 1192 份心电图。使用超声心动图,我们确认了健康受试者-无结构性心脏病-和患者房间隔缺损的诊断。我们使用了一个包含 CNN 和 LTSMs 的深度学习模型。所有儿科心脏病专家(n=12)在通过心电图分析患者时都对患者分组情况不知情。使用心电图比较了模型的诊断能力与儿科心脏病专家的诊断能力。我们评估了 792 名参与者的 1192 份心电图(828 份正常结构心脏和 364 份房间隔缺损)。深度学习模型的结果显示,准确性、敏感度、特异性、阳性预测值和 F1 得分为 0.89、0.76、0.96、0.88 和 0.81。儿科心脏病专家(n=12)的平均准确性、敏感度、特异性、阳性预测值和 F1 得分为 0.58±0.06、0.53±0.04、0.67±0.10、0.69±0.18 和 0.58±0.06。与传统的心电图检查相比,该方法在诊断房间隔缺损方面具有更高的准确性和可靠性。