Dai Tingting, Lei Peng, Zhang Bao, Tang Ailing, Geng Yanfang, Zeng Qingdao, Zhou Erjun
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
ACS Appl Mater Interfaces. 2021 May 12;13(18):21556-21564. doi: 10.1021/acsami.1c03757. Epub 2021 Apr 28.
We report a class of high-voltage organic solar cells (OSCs) processed by the environmentally friendly solvent tetrahydrofuran (THF), where four benzotriazole (BTA)-based p-type polymers (, , , and ) and a BTA-based small molecule are applied as p-type and n-type materials, respectively, according to "Same-A-Strategy" (SAS). The single-junction OSCs based on all four material blends exhibit a high open-circuit voltage () above 1.10 V. We systematically study the impact of the three different substituents (-OCH, -F, -Cl) on the BTA unit of the polymer donors. Interestingly, containing the unsubstituted BTA unit shows the efficient hole transfer and more balanced charge mobilities, thus leading to the highest power conversion efficiency (PCE) of 10.08% with a of 1.11 V and a of 13.68 mA cm. Due to the upshifted highest electron-occupied molecular orbital (HOMO) level and the weak crystallinity of the methoxy-substituted polymer , the resulting device shows the lowest PCE of 7.40% with a slightly decreased of 1.10 V. In addition, after the chlorination and fluorination, the HOMO levels of the donor materials and are gradually downshifted, contributing to increased values of 1.16 and 1.21 V, respectively. Our results prove that an unsubstituted p-type polymer can also afford high voltage and promising performance via non-halogenated solvent processing, which is of great significance for simplifying the synthesis steps and realizing the commercialization of OSCs.
我们报道了一类由环境友好型溶剂四氢呋喃(THF)加工而成的高压有机太阳能电池(OSC),其中根据“同A策略”(SAS),分别应用了四种基于苯并三唑(BTA)的p型聚合物(、、、和)和一种基于BTA的小分子作为p型和n型材料。基于所有四种材料共混物的单结OSC表现出高于1.10 V的高开路电压()。我们系统地研究了聚合物供体的BTA单元上三种不同取代基(-OCH、-F、-Cl)的影响。有趣的是,含有未取代BTA单元的表现出有效的空穴传输和更平衡的电荷迁移率,从而导致最高功率转换效率(PCE)达到10.08%,为1.11 V,为13.68 mA cm。由于甲氧基取代的聚合物的最高电子占据分子轨道(HOMO)能级上移且结晶度较弱,所得器件的PCE最低,为7.40%,略有下降,为1.10 V。此外,氯化和氟化后,供体材料和的HOMO能级逐渐下移,分别导致值增加到1.16 V和1.21 V。我们的结果证明,未取代的p型聚合物也可以通过非卤化溶剂加工提供高电压和有前景的性能,这对于简化合成步骤和实现OSC的商业化具有重要意义。