Boudia Mohamed El Amine, Zhao Cunlu
Ministry of Education Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
Nanomaterials (Basel). 2025 Feb 27;15(5):368. doi: 10.3390/nano15050368.
Enhancing the performance of organic solar cells (OSCs) is essential for achieving sustainability in energy production. This study presents an innovative strategy that involves fine-tuning the thickness of the bulk heterojunction (BHJ) photoactive layer at the nanoscale to improve efficiency. The organic blend D18:L8-BO is utilized to capture a wide range of photons while addressing the challenge of minimizing optical losses from low-energy photons. The research incorporates SnO and ZnO as electron transport layers (ETLs), with PMMA functioning as a hole transport layer (HTL). A comprehensive analysis of photon absorption, charge carrier generation, localized energy fluctuations, and thermal stability reveals their critical role in enhancing the efficiency of D18:L8-BO active films. Notably, introducing SnO as an ETL significantly decreased losses and modified localized energy, achieving an impressive efficiency of 19.85% at an optimized blend thickness of 50 nm with low voltage loss (ΔV) of 0.4 V within a J of 28 mA cm by performing an optoelectronic simulation employing "Oghma-Nano 8.1.015" software. In addition, the SnO-based structure conserved 88% of the PCE at 350 K compared to room temperature PCE, which describes the high thermal stability of this structure. These results demonstrate the potential of this methodology in improving the performance of OSCs.
提高有机太阳能电池(OSC)的性能对于实现能源生产的可持续性至关重要。本研究提出了一种创新策略,即通过在纳米尺度上微调体异质结(BHJ)光活性层的厚度来提高效率。有机混合物D18:L8-BO用于捕获广泛的光子,同时应对将低能光子的光学损失降至最低的挑战。该研究采用SnO和ZnO作为电子传输层(ETL),PMMA作为空穴传输层(HTL)。对光子吸收、电荷载流子产生、局部能量波动和热稳定性的综合分析揭示了它们在提高D18:L8-BO活性薄膜效率方面的关键作用。值得注意的是,引入SnO作为ETL显著降低了损失并改变了局部能量,通过使用“Oghma-Nano 8.1.015”软件进行光电模拟,在50 nm的优化混合厚度下,在28 mA cm的电流密度下实现了令人印象深刻的19.85%的效率,低电压损失(ΔV)为0.4 V。此外,与室温下的功率转换效率(PCE)相比,基于SnO的结构在350 K时保留了88%的PCE,这表明该结构具有高热稳定性。这些结果证明了该方法在提高OSC性能方面的潜力。