Suppr超能文献

利用羰基铁微颗粒对黏弹性水凝胶进行动态调谐,揭示细胞对三维基质力学的快速响应。

Dynamic Tuning of Viscoelastic Hydrogels with Carbonyl Iron Microparticles Reveals the Rapid Response of Cells to Three-Dimensional Substrate Mechanics.

机构信息

Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey 08028, United States.

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

出版信息

ACS Appl Mater Interfaces. 2021 May 12;13(18):20947-20959. doi: 10.1021/acsami.0c21868. Epub 2021 Apr 28.

Abstract

Current methods to dynamically tune three-dimensional hydrogel mechanics require specific chemistries and substrates that make modest, slow, and often irreversible changes in their mechanical properties, exclude the use of protein-based scaffolds, or alter the hydrogel microstructure and pore size. Here, we rapidly and reversibly alter the mechanical properties of hydrogels consisting of extracellular matrix proteins and proteoglycans by adding carbonyl iron microparticles (MPs) and applying external magnetic fields. This approach drastically alters hydrogel mechanics: rheology reveals that application of a 4000 Oe magnetic field to a 5 mg/mL collagen hydrogel containing 10 wt % MPs increases the storage modulus from approximately 1.5 to 30 kPa. Cell morphology experiments show that cells embedded within these hydrogels rapidly sense the magnetically induced changes in ECM stiffness. Ca transients are altered within seconds of stiffening or subsequent softening, and slower but still dynamic changes occur in YAP nuclear translocation in response to time-dependent application of a magnetic field. The near instantaneous change in hydrogel mechanics provides new insight into the effect of changing extracellular stiffness on both acute and chronic changes in diverse cell types embedded in protein-based scaffolds. Due to its flexibility, this method is broadly applicable to future studies interrogating cell mechanotransduction in three-dimensional substrates.

摘要

目前,动态调节三维水凝胶力学性能的方法需要特定的化学物质和基底,这些物质只能使水凝胶力学性能发生适度、缓慢且往往不可逆转的变化,排除了使用基于蛋白质的支架的可能性,或者改变了水凝胶的微观结构和孔径。在这里,我们通过添加羰基铁微颗粒(MPs)并施加外部磁场,快速可逆地改变由细胞外基质蛋白和蛋白聚糖组成的水凝胶的机械性能。这种方法极大地改变了水凝胶的力学性能:流变学研究表明,在含有 10wt% MPs 的 5mg/mL 胶原蛋白水凝胶中施加 4000Oe 的磁场,可将存储模量从约 1.5kPa 急剧增加到 30kPa。细胞形态学实验表明,嵌入这些水凝胶中的细胞可以快速感知 ECM 刚度的磁诱导变化。在变硬或随后变软后的几秒钟内,钙瞬变就会发生改变,而 YAP 核易位则会对磁场的时变施加产生较慢但仍然是动态的反应。水凝胶力学性能的瞬时变化为研究细胞在基于蛋白质的支架中嵌入的多种细胞类型的急性和慢性变化时细胞外基质刚度变化的影响提供了新的见解。由于其灵活性,这种方法广泛适用于未来研究三维基质中细胞力学转导的研究。

相似文献

2
Extracellular matrix type modulates mechanotransduction of stem cells.细胞外基质类型调节干细胞的力学转导。
Acta Biomater. 2019 Sep 15;96:310-320. doi: 10.1016/j.actbio.2019.06.048. Epub 2019 Jun 28.
10
Hydrogels with Reversible Mechanics to Probe Dynamic Cell Microenvironments.具有可逆机械性能的水凝胶用于探测动态细胞微环境。
Angew Chem Int Ed Engl. 2017 Sep 25;56(40):12132-12136. doi: 10.1002/anie.201705684. Epub 2017 Sep 1.

引用本文的文献

3
Actuated Hydrogel Platforms To Study Brain Cell Behavior.用于研究脑细胞行为的驱动水凝胶平台
Adv Healthc Mater. 2025 Apr;14(10):e2404484. doi: 10.1002/adhm.202404484. Epub 2025 Mar 16.
9
Modulation of Biofilm Mechanics by DNA Structure and Cell Type.DNA 结构和细胞类型对生物膜力学的调控。
ACS Biomater Sci Eng. 2022 Nov 14;8(11):4921-4929. doi: 10.1021/acsbiomaterials.2c00777. Epub 2022 Oct 27.

本文引用的文献

9
Hydrogels with Reversible Mechanics to Probe Dynamic Cell Microenvironments.具有可逆机械性能的水凝胶用于探测动态细胞微环境。
Angew Chem Int Ed Engl. 2017 Sep 25;56(40):12132-12136. doi: 10.1002/anie.201705684. Epub 2017 Sep 1.
10
Viscoelastic hydrogels for 3D cell culture.用于三维细胞培养的黏弹性水凝胶。
Biomater Sci. 2017 Jul 25;5(8):1480-1490. doi: 10.1039/c7bm00261k.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验