Suppr超能文献

基于开放量子系统自然轨道的路易斯结构:实空间自适应自然密度划分

Lewis Structures from Open Quantum Systems Natural Orbitals: Real Space Adaptive Natural Density Partitioning.

作者信息

Francisco Evelio, Costales Aurora, Menéndez-Herrero María, Pendás Ángel Martín

机构信息

Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, 33006 Oviedo, Spain.

出版信息

J Phys Chem A. 2021 May 13;125(18):4013-4025. doi: 10.1021/acs.jpca.1c01689. Epub 2021 Apr 28.

Abstract

Building chemical models from state-of-the-art electronic structure calculations is not an easy task, since the high-dimensional information contained in the wave function needs to be compressed and read in terms of the accepted chemical language. We have already shown ( 2018, 20, 21368) how to access Lewis structures from general wave functions in real space by reformulating the adaptive natural density partitioning (AdNDP) method proposed by Zubarev and Boldyrev ( 2008, 10, 5207). This provides intuitive Lewis descriptions from fully orbital invariant position space descriptors but depends on not immediately accessible higher order cumulant density matrices. By using an open quantum systems (OQS) perspective, we here show that the rigorously defined OQS fragment natural orbitals can be used to build a consistent real space adaptive natural density partitioning based only on spatial information and the system's one-particle density matrix. We show that this rs-AdNDP approach is a cheap, efficient, and robust technique that immerses electron counting arguments fully in the real space realm.

摘要

从最先进的电子结构计算构建化学模型并非易事,因为波函数中包含的高维信息需要根据公认的化学语言进行压缩和解读。我们已经展示过(2018年,20卷,21368页)如何通过重新表述祖巴列夫和博尔迪列夫提出的自适应自然密度划分(AdNDP)方法(2008年,10卷,5207页),从实空间中的一般波函数获取路易斯结构。这从完全轨道不变的位置空间描述符提供了直观的路易斯描述,但依赖于无法立即获取的高阶累积量密度矩阵。通过采用开放量子系统(OQS)的视角,我们在此表明,严格定义的OQS片段自然轨道可用于仅基于空间信息和系统的单粒子密度矩阵构建一致的实空间自适应自然密度划分。我们表明,这种实空间AdNDP方法是一种廉价、高效且稳健的技术,它将电子计数论据完全融入实空间领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84a4/8900138/51eaffc4d157/jp1c01689_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验