Suppr超能文献

基于机器学习的脑瘫儿童肌电图步态事件预测。

Machine-Learning-Based Prediction of Gait Events From EMG in Cerebral Palsy Children.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2021;29:819-830. doi: 10.1109/TNSRE.2021.3076366. Epub 2021 May 5.

Abstract

Machine-learning techniques are suitably employed for gait-event prediction from only surface electromyographic (sEMG) signals in control subjects during walking. Nevertheless, a reference approach is not available in cerebral-palsy hemiplegic children, likely due to the large variability of foot-floor contacts. This study is designed to investigate a machine-learning-based approach, specifically developed to binary classify gait events and to predict heel-strike (HS) and toe-off (TO) timing from sEMG signals in hemiplegic-child walking. To this objective, sEMG signals are acquired from five hemiplegic-leg muscles in nearly 2500 strides from 20 hemiplegic children, acknowledged as Winters' group 1 and 2. sEMG signals, segmented in overlapping windows of 600 samples (pace = 5 samples), are used to train a multi-layer perceptron model. Intra-subject and inter-subject experimental settings are tested. The best-performing intra-subject approach is able to provide in the hemiplegic population a mean classification accuracy (±SD) of 0.97±0.01 and a suitable prediction of HS and TO events, in terms of average mean absolute error (MAE, 14.8±3.2 ms for HS and 17.6±4.2 ms for TO) and F1-score (0.95±0.03 for HS and 0.92±0.07 for TO). These results outperform previous sEMG-based attempts in cerebral-palsy populations and are comparable with outcomes achieved by reference approaches in control populations. In conclusion, the findings of the study prove the feasibility of neural networks in predicting the two main gait events using surface EMG signals, also in condition of high variability of the signal to predict as in hemiplegic cerebral palsy.

摘要

机器学习技术适用于从正常行走受试者的表面肌电(sEMG)信号中预测步态事件。然而,在偏瘫脑瘫儿童中,尚无参考方法,这可能是由于足地接触的变化较大所致。本研究旨在研究一种基于机器学习的方法,该方法专门用于对步态事件进行二进制分类,并从偏瘫儿童行走时的 sEMG 信号预测足跟触地(HS)和脚趾离地(TO)时间。为此,从 20 名偏瘫儿童的近 2500 步中获取了五个偏瘫腿肌肉的 sEMG 信号,这些信号被归类为 Winters 组 1 和 2。将 sEMG 信号分段为 600 个样本(步长= 5 个样本)的重叠窗口,并使用多层感知器模型进行训练。测试了个体内和个体间的实验设置。表现最佳的个体内方法能够为偏瘫人群提供 0.97±0.01 的平均分类准确率(±SD),并能够适当预测 HS 和 TO 事件,平均均方根误差(MAE,HS 为 14.8±3.2 ms,TO 为 17.6±4.2 ms)和 F1 分数(HS 为 0.95±0.03,TO 为 0.92±0.07)。这些结果优于脑瘫人群中以前的基于 sEMG 的尝试,并且与对照组中参考方法的结果相当。总之,该研究的结果证明了神经网络在使用表面肌电信号预测两个主要步态事件中的可行性,即使在预测信号变化较大的情况下(如偏瘫脑瘫)也是如此。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验