Suppr超能文献

学习非局部灌注纹理以实现高质量 CT 灌注成像。

Learning non-local perfusion textures for high-quality computed tomography perfusion imaging.

机构信息

School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China.

College of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.

出版信息

Phys Med Biol. 2021 May 20;66(11). doi: 10.1088/1361-6560/abfc90.

Abstract

. Computed tomography perfusion (CTP) imaging plays a critical role in the acute stroke syndrome assessment due to its widespread availability, speed of image acquisition, and relatively low cost. However, due to its repeated scanning protocol, CTP imaging involves a substantial radiation dose, which might increase potential cancer risks.. In this work, we present a novel deep learning model called non-local perfusion texture learning network (NPTN) for high-quality CTP imaging at low-dose cases. Specifically, considering abundant similarities in the CTP images, i.e. latent self-similarities within the non-local region in the CTP images, we firstly search the most similar pixels from the adjacent frames within a fixed search window to obtain the non-local similarities and to construct non-local textures vector. Then, both the low-dose frame and these non-local textures from adjacent frames are fed into a convolution neural network to predict high-quality CTP images, which can help better characterize the structure details and contrast variants in the targeted CTP image rather than simply utilizing the targeted frame itself. The residual learning strategy and batch normalization are utilized to boost the performance of the convolution neural network. In the experiment, the CTP images of 31 patients with suspected stroke disease are collected to demonstrate the performance of the presented NPTN method.. The results show the presented NPTN method obtains superior performance compared with the competing methods. From numerical value, at all dose levels, the presented NPTN method has achieved around 3.0 dB improvement of average PSNR, an increase of around 1.4% of average SSIM, and a decrease of around 4.8% of average RMSE in the low-dose CTP reconstruction task, and also has achieved an increase of around 3.4% of average SSIM and a decrease of around 61.1% of average RMSE in the cerebral blood flow (CBF) estimation task.. The presented NPTN method can obtain high-quality CTP images and estimate high-accuracy CBF map by characterizing more structure details and contrast variants in the CTP image and outperform the competing methods at low-dose cases.

摘要

. 计算机断层灌注 (CTP) 成像在急性脑卒中综合征评估中起着至关重要的作用,因为它具有广泛的可用性、快速的图像采集速度和相对较低的成本。然而,由于其重复扫描方案,CTP 成像涉及大量的辐射剂量,这可能会增加潜在的癌症风险。在这项工作中,我们提出了一种新的深度学习模型,称为非局部灌注纹理学习网络 (NPTN),用于在低剂量情况下进行高质量的 CTP 成像。具体来说,考虑到 CTP 图像中存在大量的相似性,即 CTP 图像中非局部区域的潜在自相似性,我们首先在固定搜索窗口内从相邻帧中搜索最相似的像素,以获得非局部相似性并构建非局部纹理向量。然后,将低剂量帧和来自相邻帧的这些非局部纹理都输入到卷积神经网络中,以预测高质量的 CTP 图像,这有助于更好地描述目标 CTP 图像中的结构细节和对比度变化,而不仅仅是简单地利用目标帧本身。利用残差学习策略和批量归一化来提高卷积神经网络的性能。在实验中,收集了 31 名疑似脑卒中患者的 CTP 图像,以验证所提出的 NPTN 方法的性能。结果表明,所提出的 NPTN 方法与竞争方法相比具有更好的性能。从数值上看,在所有剂量水平下,所提出的 NPTN 方法在低剂量 CTP 重建任务中平均 PSNR 提高了约 3.0dB,平均 SSIM 提高了约 1.4%,平均 RMSE 降低了约 4.8%,在脑血流 (CBF) 估计任务中平均 SSIM 提高了约 3.4%,平均 RMSE 降低了约 61.1%。所提出的 NPTN 方法可以通过描述 CTP 图像中的更多结构细节和对比度变化来获得高质量的 CTP 图像,并在低剂量情况下优于竞争方法来估计高精度的 CBF 图。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验