Suppr超能文献

神经网络衍生的灌注图:急性缺血性脑卒中患者计算机断层扫描灌注的无模型方法。

Neural network-derived perfusion maps: A model-free approach to computed tomography perfusion in patients with acute ischemic stroke.

作者信息

Gava Umberto A, D'Agata Federico, Tartaglione Enzo, Renzulli Riccardo, Grangetto Marco, Bertolino Francesca, Santonocito Ambra, Bennink Edwin, Vaudano Giacomo, Boghi Andrea, Bergui Mauro

机构信息

Division of Neuroradiology, Molinette Hospital, Turin, Italy.

Department of Neurosciences, University of Turin, Turin, Italy.

出版信息

Front Neuroinform. 2023 Mar 9;17:852105. doi: 10.3389/fninf.2023.852105. eCollection 2023.

Abstract

OBJECTIVE

In this study, we investigate whether a Convolutional Neural Network (CNN) can generate informative parametric maps from the pre-processed CT perfusion data in patients with acute ischemic stroke in a clinical setting.

METHODS

The CNN training was performed on a subset of 100 pre-processed perfusion CT dataset, while 15 samples were kept for testing. All the data used for the training/testing of the network and for generating ground truth (GT) maps, using a state-of-the-art deconvolution algorithm, were previously pre-processed using a pipeline for motion correction and filtering. Threefold cross validation had been used to estimate the performance of the model on unseen data, reporting Mean Squared Error (MSE). Maps accuracy had been checked through manual segmentation of infarct core and total hypo-perfused regions on both CNN-derived and GT maps. Concordance among segmented lesions was assessed using the Dice Similarity Coefficient (DSC). Correlation and agreement among different perfusion analysis methods were evaluated using mean absolute volume differences, Pearson correlation coefficients, Bland-Altman analysis, and coefficient of repeatability across lesion volumes.

RESULTS

The MSE was very low for two out of three maps, and low in the remaining map, showing good generalizability. Mean Dice scores from two different raters and the GT maps ranged from 0.80 to 0.87. Inter-rater concordance was high, and a strong correlation was found between lesion volumes of CNN maps and GT maps (0.99, 0.98, respectively).

CONCLUSION

The agreement between our CNN-based perfusion maps and the state-of-the-art deconvolution-algorithm perfusion analysis maps, highlights the potential of machine learning methods applied to perfusion analysis. CNN approaches can reduce the volume of data required by deconvolution algorithms to estimate the ischemic core, and thus might allow the development of novel perfusion protocols with lower radiation dose deployed to the patient.

摘要

目的

在本研究中,我们调查卷积神经网络(CNN)能否在临床环境中从急性缺血性中风患者的预处理CT灌注数据生成信息丰富的参数图。

方法

CNN训练在100个预处理灌注CT数据集的一个子集上进行,同时保留15个样本用于测试。所有用于网络训练/测试以及使用先进的反卷积算法生成真实(GT)图的数据,之前都使用运动校正和滤波管道进行了预处理。使用三重交叉验证来估计模型在未见数据上的性能,报告均方误差(MSE)。通过在CNN衍生图和GT图上手动分割梗死核心和总低灌注区域来检查图的准确性。使用骰子相似系数(DSC)评估分割病变之间的一致性。使用平均绝对体积差异、Pearson相关系数、Bland-Altman分析以及跨病变体积的重复性系数来评估不同灌注分析方法之间的相关性和一致性。

结果

三张图中有两张的MSE非常低,另一张图的MSE较低,显示出良好的泛化性。两位不同评分者与GT图的平均骰子分数在0.80至0.87之间。评分者间一致性高,并且在CNN图和GT图的病变体积之间发现了强相关性(分别为0.99和0.98)。

结论

我们基于CNN的灌注图与先进的反卷积算法灌注分析图之间的一致性,突出了应用于灌注分析的机器学习方法的潜力。CNN方法可以减少反卷积算法估计缺血核心所需的数据量,从而可能允许开发部署给患者的辐射剂量更低的新型灌注方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f53/10034033/6700ef513090/fninf-17-852105-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验