Suppr超能文献

重症监护数据交换格式:一种用于合并重症监护临床和高频生理数据的灵活数据标准建议。

The critical care data exchange format: a proposed flexible data standard for combining clinical and high-frequency physiologic data in critical care.

机构信息

Department of Medicine, Queen's University, Kingston, ON, Canada.

Department of Critical Care Medicine, Queen's University, Kingston, ON, Canada.

出版信息

Physiol Meas. 2021 Jun 29;42(6). doi: 10.1088/1361-6579/abfc9b.

Abstract

To develop a standardized format for exchanging clinical and physiologic data generated in the intensive care unit. Our goal was to develop a format that would accommodate the data collection pipelines of various sites but would not require dataset-specific schemas or ad-hoc tools for decoding and analysis.A number of centers had independently developed solutions for storing clinical and physiologic data using Hierarchical Data Format-Version 5 (HDF5), a well-supported standard already in use in multiple other fields. These individual solutions involved design choices that made the data difficult to share despite the underlying common framework. A collaborative process was used to form the basis of a proposed standard that would allow for interoperability and data sharing with common analysis tools.We developed the HDF5-based critical care data exchange format which stores multiparametric data in an efficient, self-describing, hierarchical structure and supports real-time streaming and compression. In addition to cardiorespiratory and laboratory data, the format can, in future, accommodate other large datasets such as imaging and genomics. We demonstated the feasibility of a standardized format by converting data from three sites as well as the MIMIC III dataset.Individual approaches to the storage of multiparametric clinical data are proliferating, representing both a duplication of effort and a missed opportunity for collaboration. Adoption of a standardized format for clinical data exchange will enable the development of a digital biobank, facilitate the external validation of machine learning models and be a powerful tool for sharing multiparametric, high frequency patient level data in multisite clinical trials. Our proposed solution focuses on supporting standardized ontologies such as LOINC allowing easy reading of data regardless of the source and in so doing provides a useful method to integrate large amounts of existing data.

摘要

为在重症监护病房中生成的临床和生理数据开发标准化的交换格式。我们的目标是开发一种格式,该格式既可以适应各个站点的数据收集管道,又不需要特定于数据集的模式或临时工具来解码和分析。许多中心已经独立开发了使用层次数据格式版本 5(HDF5)存储临床和生理数据的解决方案,这是一种已经在多个其他领域使用的支持良好的标准。这些单独的解决方案涉及到设计选择,尽管有基础的共同框架,但这些选择使得数据难以共享。我们使用协作过程形成了拟议标准的基础,该标准将允许与常见分析工具进行互操作和数据共享。我们开发了基于 HDF5 的重症监护数据交换格式,该格式将多参数数据存储在高效、自描述的层次结构中,并支持实时流和压缩。除了心肺和实验室数据外,该格式还可以在将来容纳其他大型数据集,如成像和基因组学。我们通过转换来自三个站点的数据以及 MIMIC III 数据集,证明了标准化格式的可行性。多参数临床数据存储的个别方法正在增多,这既代表了重复工作,也错过了合作的机会。采用标准化的临床数据交换格式将能够开发数字生物库,促进机器学习模型的外部验证,并成为在多站点临床试验中共享多参数、高频患者水平数据的强大工具。我们提出的解决方案侧重于支持标准化的本体,如 LOINC,无论来源如何,都可以轻松读取数据,从而提供了一种有用的方法来集成大量现有数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验