Suppr超能文献

使用个性化优势指数预测持续性躯体症状患者的最佳治疗结果。

Predicting optimal treatment outcomes using the Personalized Advantage Index for patients with persistent somatic symptoms.

作者信息

Senger Katharina, Schröder Annette, Kleinstäuber Maria, Rubel Julian A, Rief Winfried, Heider Jens

机构信息

Department of Psychology, University of Koblenz-Landau, Landau, Germany.

Department of Psychological Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.

出版信息

Psychother Res. 2022 Feb;32(2):165-178. doi: 10.1080/10503307.2021.1916120. Epub 2021 Apr 29.

Abstract

Because individual patients with persistent somatic symptoms (PSS) respond differently to treatments, a better understanding of the factors that predict therapy outcomes are of high importance. Aggregating a wide selection of information into the treatment-decision process is a challenge for clinicians. Using the Personalized Advantage Index (PAI) this study aims to deal with this. Data from a multicentre RCT comparing CBT (N = 128) versus CBT enriched with emotion regulation training (ENCERT) (N = 126) for patients diagnosed with somatic symptom disorder were used to identify based on two machine learning approaches predictors of therapy outcomes. The identified predictors were used to calculate the PAI. Five treatment unspecific predictors (pre-treatment somatic symptom severity, depression, symptom disability, health-related quality of life, age) and five treatment specific moderators (global functioning, early childhood traumatic events, gender, health anxiety, emotion regulation skills) were identified. Individuals assigned to their PAI-indicated optimal treatment had significantly lower somatic symptom severity at the end of therapy compared to those randomised to their non-optimal condition. Allowing patients to choose a personalised treatment seems to be meaningful. This could help to improve outcomes for PSS and reduce its high costs to the health care system.

摘要

由于患有持续性躯体症状(PSS)的个体患者对治疗的反应不同,因此更好地了解预测治疗结果的因素非常重要。将大量信息整合到治疗决策过程中对临床医生来说是一项挑战。本研究旨在使用个性化优势指数(PAI)来应对这一挑战。来自一项多中心随机对照试验的数据被用于基于两种机器学习方法确定治疗结果的预测因素,该试验比较了认知行为疗法(CBT)(N = 128)与富含情绪调节训练的认知行为疗法(ENCERT)(N = 126)对被诊断为躯体症状障碍的患者的疗效。所确定的预测因素被用于计算PAI。确定了五个非治疗特异性预测因素(治疗前躯体症状严重程度、抑郁、症状残疾、健康相关生活质量、年龄)和五个治疗特异性调节因素(整体功能、童年早期创伤事件、性别、健康焦虑、情绪调节技能)。与被随机分配到非最佳治疗条件的患者相比,被分配到PAI指示的最佳治疗的个体在治疗结束时的躯体症状严重程度显著更低。让患者选择个性化治疗似乎是有意义的。这有助于改善PSS的治疗结果,并降低其给医疗保健系统带来的高昂成本。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验