Suppr超能文献

心理健康研究中人工智能应用的方法学与质量缺陷:系统评价

Methodological and Quality Flaws in the Use of Artificial Intelligence in Mental Health Research: Systematic Review.

作者信息

Tornero-Costa Roberto, Martinez-Millana Antonio, Azzopardi-Muscat Natasha, Lazeri Ledia, Traver Vicente, Novillo-Ortiz David

机构信息

Instituto Universitario de Investigación de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas, Universitat Politècnica de València, Valencia, Spain.

Division of Country Health Policies and Systems, World Health Organization, Regional Office for Europe, Copenhagen, Denmark.

出版信息

JMIR Ment Health. 2023 Feb 2;10:e42045. doi: 10.2196/42045.

Abstract

BACKGROUND

Artificial intelligence (AI) is giving rise to a revolution in medicine and health care. Mental health conditions are highly prevalent in many countries, and the COVID-19 pandemic has increased the risk of further erosion of the mental well-being in the population. Therefore, it is relevant to assess the current status of the application of AI toward mental health research to inform about trends, gaps, opportunities, and challenges.

OBJECTIVE

This study aims to perform a systematic overview of AI applications in mental health in terms of methodologies, data, outcomes, performance, and quality.

METHODS

A systematic search in PubMed, Scopus, IEEE Xplore, and Cochrane databases was conducted to collect records of use cases of AI for mental health disorder studies from January 2016 to November 2021. Records were screened for eligibility if they were a practical implementation of AI in clinical trials involving mental health conditions. Records of AI study cases were evaluated and categorized by the International Classification of Diseases 11th Revision (ICD-11). Data related to trial settings, collection methodology, features, outcomes, and model development and evaluation were extracted following the CHARMS (Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies) guideline. Further, evaluation of risk of bias is provided.

RESULTS

A total of 429 nonduplicated records were retrieved from the databases and 129 were included for a full assessment-18 of which were manually added. The distribution of AI applications in mental health was found unbalanced between ICD-11 mental health categories. Predominant categories were Depressive disorders (n=70) and Schizophrenia or other primary psychotic disorders (n=26). Most interventions were based on randomized controlled trials (n=62), followed by prospective cohorts (n=24) among observational studies. AI was typically applied to evaluate quality of treatments (n=44) or stratify patients into subgroups and clusters (n=31). Models usually applied a combination of questionnaires and scales to assess symptom severity using electronic health records (n=49) as well as medical images (n=33). Quality assessment revealed important flaws in the process of AI application and data preprocessing pipelines. One-third of the studies (n=56) did not report any preprocessing or data preparation. One-fifth of the models were developed by comparing several methods (n=35) without assessing their suitability in advance and a small proportion reported external validation (n=21). Only 1 paper reported a second assessment of a previous AI model. Risk of bias and transparent reporting yielded low scores due to a poor reporting of the strategy for adjusting hyperparameters, coefficients, and the explainability of the models. International collaboration was anecdotal (n=17) and data and developed models mostly remained private (n=126).

CONCLUSIONS

These significant shortcomings, alongside the lack of information to ensure reproducibility and transparency, are indicative of the challenges that AI in mental health needs to face before contributing to a solid base for knowledge generation and for being a support tool in mental health management.

摘要

背景

人工智能(AI)正在引发医学和医疗保健领域的一场革命。心理健康问题在许多国家极为普遍,而新冠疫情增加了民众心理健康进一步受损的风险。因此,评估人工智能在心理健康研究中的应用现状,以了解其趋势、差距、机遇和挑战具有重要意义。

目的

本研究旨在从方法、数据、结果、性能和质量等方面对人工智能在心理健康领域的应用进行系统综述。

方法

在PubMed、Scopus、IEEE Xplore和Cochrane数据库中进行系统检索,以收集2016年1月至2021年11月期间人工智能用于心理健康障碍研究的用例记录。如果记录是人工智能在涉及心理健康状况的临床试验中的实际应用,则对其进行资格筛选。人工智能研究案例记录根据《国际疾病分类》第11版(ICD-11)进行评估和分类。按照CHARM(预测模型研究系统评价的批判性评估和数据提取)指南提取与试验设置、收集方法、特征、结果以及模型开发和评估相关的数据。此外,还提供了偏倚风险评估。

结果

从数据库中总共检索到429条非重复记录,其中129条被纳入全面评估,其中18条是手动添加的。发现人工智能在心理健康领域的应用在ICD-11心理健康类别之间分布不均衡。主要类别为抑郁症(n = 70)和精神分裂症或其他原发性精神障碍(n = 26)。大多数干预措施基于随机对照试验(n = 62),在观察性研究中其次是前瞻性队列研究(n = 24)。人工智能通常用于评估治疗质量(n = 44)或将患者分层为亚组和聚类(n = 31)。模型通常结合问卷和量表,使用电子健康记录(n = 49)以及医学图像(n = 33)来评估症状严重程度。质量评估揭示了人工智能应用过程和数据预处理流程中的重要缺陷。三分之一的研究(n = 56)未报告任何预处理或数据准备情况。五分之一的模型是通过比较几种方法开发的(n = 35),而没有事先评估其适用性,只有一小部分报告了外部验证(n = 21)。只有1篇论文报告了对先前人工智能模型的二次评估。由于对调整超参数、系数和模型可解释性的策略报告不佳,偏倚风险和透明报告得分较低。国际合作很少(n = 17),数据和开发的模型大多仍处于保密状态(n = 126)。

结论

这些重大缺陷,再加上缺乏确保可重复性和透明度的信息,表明人工智能在心理健康领域在为知识生成奠定坚实基础并成为心理健康管理的支持工具之前,需要面对诸多挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50d8/9936371/3eb4089e5411/mental_v10i1e42045_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验