Suppr超能文献

叶序的对称性及其转变。

Symmetry and its transition in phyllotaxis.

机构信息

Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma-shi, Nara, 630-0192, Japan.

Botanical Gardens, Graduate School of Science, The University of Tokyo, 3-7-1, Hakusan, Bunkyo-ku, Tokyo, 112-0001, Japan.

出版信息

J Plant Res. 2021 May;134(3):417-430. doi: 10.1007/s10265-021-01308-1. Epub 2021 Apr 28.

Abstract

Symmetry is an important component of geometric beauty and regularity in both natural and cultural scenes. Plants also display various geometric patterns with some kinds of symmetry, of which the most notable example is the arrangement of leaves around the stem, i.e., phyllotaxis. In phyllotaxis, reflection symmetry, rotation symmetry, translation symmetry, corkscrew symmetry, and/or glide reflection symmetry can be seen. These phyllotactic symmetries can be dealt with the group theory. In this review, we introduce classification of phyllotactic symmetries according to the group theory and enumerate all types of phyllotaxis, not only major ones such as spiral and decussate but also minor ones such as orixate and semi-decussate, with their symmetry groups. Next, based on the mathematical model studies of phyllotactic pattern formation, we discuss transitions between phyllotaxis types different in the symmetry class with a focus on the transition into one of the least symmetric phyllotaxis, orixate, as a representative of the symmetry-breaking process. By changes of parameters of the mathematical model, the phyllotactic pattern generated can suddenly switch its symmetry class, which is not constrained by the group-subgroup relationship of symmetry. The symmetry-breaking path to orixate phyllotaxis is also accompanied by dynamic changes of the symmetry class. The viewpoint of symmetry brings a better understanding of the variety of phyllotaxis and its transition.

摘要

对称性是自然和文化场景中几何美感和规则性的重要组成部分。植物也表现出各种具有某种对称性的几何图案,其中最显著的例子是叶子围绕茎的排列,即叶序。在叶序中,可以看到反射对称、旋转对称、平移对称、螺旋对称和/或滑移反射对称。这些叶序对称性可以用群论来处理。在这篇综述中,我们根据群论介绍了叶序对称性的分类,并列举了所有类型的叶序,不仅包括螺旋和交叉等主要类型,还包括互生和半交叉等次要类型,以及它们的对称群。接下来,基于叶序模式形成的数学模型研究,我们讨论了不同对称类之间的叶序类型的转变,重点讨论了向对称性最低的叶序之一——互生的转变,以代表对称性破坏的过程。通过改变数学模型的参数,生成的叶序模式可以突然改变其对称类,这不受对称性的群-子群关系的限制。向互生叶序的对称破缺路径也伴随着对称类的动态变化。对称性的观点可以更好地理解叶序的多样性及其转变。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验