Suppr超能文献

褐飞虱对吡丙醚产生代谢抗性的机制:细胞色素 P450 CYP6CS1 的过度表达赋予了吡丙醚抗性。

Mechanism of metabolic resistance to pymetrozine in Nilaparvata lugens: over-expression of cytochrome P450 CYP6CS1 confers pymetrozine resistance.

机构信息

College of Plant Protection, Nanjing Agricultural University, Nanjing, China.

State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China.

出版信息

Pest Manag Sci. 2021 Sep;77(9):4128-4137. doi: 10.1002/ps.6438. Epub 2021 May 13.

Abstract

BACKGROUND

Pymetrozine is commonly used for the control of Nilaparvata lugens, and resistance to pymetrozine has been frequently reported in the field populations in recent years. However, the mechanism of brown planthopper resistance to pymetrozine is still unknown.

RESULTS

In this study, a pymetrozine-resistant strain (PMR) was established, and the potential biochemical resistance mechanism of N. lugens to pymetrozine was investigated. Pymetrozine was synergized by the inhibitor piperonyl butoxide (PBO) in the PMR with 2.83-fold relative synergistic ratios compared with the susceptible strain (Sus). Compared with the Sus, the cytochrome P450 monooxygenase activity of PMR was increased by 1.7 times, and two P450 genes (NlCYP6CS1 and NlCYP301B1) were found to be significantly overexpressed more than 6.0-fold in the PMR. Pymetrozine exposure induced upregulation of NlCYP6CS1 expression in the Sus, but the expression of NlCYP301B1 did not change significantly. In addition, RNA interference (RNAi)-mediated suppression of NlCYP6CS1 gene expression dramatically increased the toxicity of pymetrozine against N. lugens. Moreover, transgenic lines of Drosophila melanogaster expressing NlCYP6CS1 were less susceptible to pymetrozine, and had a stronger ability to metabolize pymetrozine.

CONCLUSIONS

Taken together, our findings indicate that the overexpression of NlCYP6CS1 is one of the key factors contributing to pymetrozine resistance in N. lugens. And this result is helpful in proposing a management strategy for pymetrozine resistance.

摘要

背景

吡丙醚常用于防治褐飞虱,近年来田间种群对吡丙醚的抗性频繁报道。然而,褐飞虱对吡丙醚的抗性机制尚不清楚。

结果

本研究建立了吡丙醚抗性品系(PMR),并研究了褐飞虱对吡丙醚潜在的生化抗性机制。抑制剂增效醚(PBO)对 PMR 表现出 2.83 倍的相对增效比值,与敏感品系(Sus)相比,PMR 的细胞色素 P450 单加氧酶活性增加了 1.7 倍,并且发现两种 P450 基因(NlCYP6CS1 和 NlCYP301B1)在 PMR 中表达显著上调超过 6.0 倍。吡丙醚暴露诱导 Sus 中 NlCYP6CS1 表达上调,但 NlCYP301B1 的表达没有明显变化。此外,RNA 干扰(RNAi)介导的 NlCYP6CS1 基因表达抑制显著增加了吡丙醚对褐飞虱的毒性。此外,表达 NlCYP6CS1 的黑腹果蝇转基因品系对吡丙醚的敏感性降低,并且具有更强的代谢吡丙醚的能力。

结论

综上所述,我们的研究结果表明,NlCYP6CS1 的过度表达是褐飞虱对吡丙醚产生抗性的关键因素之一。这一结果有助于提出吡丙醚抗性管理策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验