Zhao Zaiwang, Wang Xiao, Jing Xinxin, Zhao Yujuan, Lan Kun, Zhang Wei, Duan Linlin, Guo Dingyi, Wang Changyao, Peng Liang, Zhang Xingmiao, An Zesheng, Li Wei, Nie Zhihong, Fan Chunhai, Zhao Dongyuan
Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China.
State Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining and Technology, Xuzhou, 221116, P. R. China.
Adv Mater. 2021 Jun;33(23):e2100820. doi: 10.1002/adma.202100820. Epub 2021 Apr 29.
Ultrafine nanoparticles with organic-inorganic hybridization have essential roles in myriad applications. Over the past three decades, although various efforts on the formation of organic or inorganic ultrasmall nanoparticles have been made, ultrafine organic-inorganic hybrid nanoparticles have scarcely been achieved. Herein, a family of ultrasmall hybrid nanoparticles with a monodisperse, uniform size is synthesized by a facile thermo-kinetics-mediated copolymer monomicelle approach. These thermo-kinetics-mediated monomicelles with amphiphilic ABC triblock copolymers are structurally robust due to their solidified polystyrene core, endowing them with ultrahigh thermodynamic stability, which is difficult to achieve using Pluronic surfactant-based micelles (e.g., F127). This great stability combined with a core-shell-corona structure makes the monodispersed monomicelles a robust template for the precise synthesis of ultrasmall hybrid nanoparticles with a highly uniform size. As a demonstration, the obtained micelles/SiO hybrid nanoparticles display ultrafine sizes, excellent uniformity, monodispersity, and tunable structural parameters (diameters: 24-47 nm and thin shell thickness: 2.0-4.0 nm). Notably, this approach is universal for creating a variety of multifunctional ultrasmall hybrid nanostructures, involving organic/organic micelle/polymers (polydopamine) nanoparticles, organic/inorganic micelle/metal oxides (ZnO, TiO , Fe O ), micelle/hydroxides (Co(OH) ), micelle/noble metals (Ag), and micelle/TiO /SiO hybrid composites. As a proof of concept, the ultrasmall micelle/SiO hybrid nanoparticles demonstrate superior toughness as biomimetic materials.
具有有机-无机杂化结构的超细纳米颗粒在众多应用中发挥着重要作用。在过去三十年里,尽管人们在制备有机或无机超小纳米颗粒方面付出了诸多努力,但超细有机-无机杂化纳米颗粒却鲜有成功制备的报道。在此,我们通过一种简便的热动力学介导的共聚物单分子胶束方法,合成了一系列尺寸单分散且均匀的超小杂化纳米颗粒。这些由两亲性ABC三嵌段共聚物形成的热动力学介导单分子胶束,因其固化的聚苯乙烯核而具有结构稳定性,赋予了它们超高的热力学稳定性,这是基于普朗尼克表面活性剂的胶束(如F127)难以实现的。这种高稳定性与核-壳-冠层结构相结合,使得单分散的单分子胶束成为精确合成尺寸高度均匀的超小杂化纳米颗粒的理想模板。作为例证,所制备的胶束/SiO杂化纳米颗粒展现出超细的尺寸、优异的均匀性、单分散性以及可调控的结构参数(直径:24 - 47 nm,薄壳厚度:2.0 - 4.0 nm)。值得注意的是,该方法对于创建各种多功能超小杂化纳米结构具有通用性,包括有机/有机胶束/聚合物(聚多巴胺)纳米颗粒、有机/无机胶束/金属氧化物(ZnO、TiO 、Fe O )、胶束/氢氧化物(Co(OH) )、胶束/贵金属(Ag)以及胶束/TiO /SiO杂化复合材料。作为概念验证,超小胶束/SiO杂化纳米颗粒作为仿生材料表现出卓越的韧性。