Suppr超能文献

一种用于降低对比增强脑 MRI 钆剂量的通用深度学习模型。

A generic deep learning model for reduced gadolinium dose in contrast-enhanced brain MRI.

机构信息

Subtle Medical Inc., Menlo Park, CA, USA.

Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA.

出版信息

Magn Reson Med. 2021 Sep;86(3):1687-1700. doi: 10.1002/mrm.28808. Epub 2021 Apr 29.

Abstract

PURPOSE

With rising safety concerns over the use of gadolinium-based contrast agents (GBCAs) in contrast-enhanced MRI, there is a need for dose reduction while maintaining diagnostic capability. This work proposes comprehensive technical solutions for a deep learning (DL) model that predicts contrast-enhanced images of the brain with approximately 10% of the standard dose, across different sites and scanners.

METHODS

The proposed DL model consists of a set of methods that improve the model robustness and generalizability. The steps include multi-planar reconstruction, 2.5D model, enhancement-weighted L1, perceptual, and adversarial losses. The proposed model predicts contrast-enhanced images from corresponding pre-contrast and low-dose images. With IRB approval and informed consent, 640 heterogeneous patient scans (56 train, 13 validation, and 571 test) from 3 institutions consisting of 3D T1-weighted brain images were used. Quantitative metrics were computed and 50 randomly sampled test cases were evaluated by 2 board-certified radiologists. Quantitative tumor segmentation was performed on cases with abnormal enhancements. Ablation study was performed for systematic evaluation of proposed technical solutions.

RESULTS

The average peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) between full-dose and model prediction were dB and , respectively. Radiologists found the same enhancing pattern in 45/50 (90%) cases; discrepancies were minor differences in contrast intensity and artifacts, with no effect on diagnosis. The average segmentation Dice score between full-dose and synthesized images was (median = 0.91).

CONCLUSIONS

We have proposed a DL model with technical solutions for low-dose contrast-enhanced brain MRI with potential generalizability under diverse clinical settings.

摘要

目的

随着对比增强磁共振成像中使用钆基造影剂(GBCA)的安全性担忧不断增加,需要在保持诊断能力的同时降低剂量。本研究提出了一种深度学习(DL)模型的综合技术解决方案,该模型可以预测不同部位和扫描仪的大脑对比增强图像,剂量约为标准剂量的 10%。

方法

所提出的 DL 模型由一组提高模型稳健性和通用性的方法组成。这些步骤包括多平面重建、2.5D 模型、增强加权 L1、感知和对抗性损失。该模型从相应的预对比和低剂量图像预测对比增强图像。本研究获得了 3 个机构的 640 例异质患者扫描(56 例训练、13 例验证和 571 例测试),包括 3D T1 加权脑图像。计算了定量指标,并由 2 名具有董事会认证的放射科医生评估了 50 例随机抽样的测试病例。对异常增强的病例进行了定量肿瘤分割。进行了消融研究以系统评估所提出的技术解决方案。

结果

全剂量和模型预测之间的平均峰值信噪比(PSNR)和结构相似性指数度量(SSIM)分别为 dB 和 。放射科医生在 45/50 例(90%)病例中发现了相同的增强模式;差异仅为对比度强度和伪影的细微差异,不影响诊断。全剂量和合成图像之间的平均分割 Dice 评分分别为 (中位数=0.91)。

结论

我们提出了一种具有技术解决方案的深度学习模型,用于低剂量对比增强脑 MRI,具有在不同临床环境下潜在的通用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验