Twiefel Jens, Glukhovkoy Anatoly, de Wall Sascha, Wurz Marc Christopher, Sehlmeyer Merle, Hitzemann Moritz, Zimmermann Stefan
Institute of Dynamics and Vibration Research, Leibniz Universität Hannover, An der Universität 1 Geb. 8142, 30823 Grabsen, Germany.
Institute of Micro Production Technology, Leibniz Universität Hannover, An der Universität 2, 30823 Grabsen, Germany.
Sensors (Basel). 2021 Apr 4;21(7):2533. doi: 10.3390/s21072533.
The detection of exceedingly small masses still presents a large challenge, and even though very high sensitivities have been archived, the fabrication of those setups is still difficult. In this paper, a novel approach for a co-resonant mass detector is theoretically presented, where simple fabrication is addressed in this early concept phase. To simplify the setup, longitudinal and bending vibrations were combined for the first time. The direct integration of an aluminum nitride (AlN) piezoelectric element for simultaneous excitation and sensing further simplified the setup. The feasibility of this concept is shown by a model-based approach, and the underlying parameter dependencies are presented with an equivalent model. To include the geometrical and material aspects, a finite element model that supports the concept as a very promising approach for future nano-mass detectors is established.
检测极其微小的质量仍然面临巨大挑战,尽管已经实现了非常高的灵敏度,但这些装置的制造仍然困难。本文从理论上提出了一种用于共谐振质量检测器的新方法,在这个早期概念阶段就解决了简单制造的问题。为了简化装置,首次将纵向振动和弯曲振动结合起来。直接集成氮化铝(AlN)压电元件用于同时激发和传感,进一步简化了装置。通过基于模型的方法展示了这个概念的可行性,并使用等效模型给出了潜在的参数依赖性。为了纳入几何和材料方面的因素,建立了一个有限元模型,该模型支持这一概念,认为它是未来纳米质量检测器非常有前景的方法。