Suppr超能文献

前列腺癌诊断算法作为从患者首次分层到最终治疗决策的“路线图”。

Prostate Cancer Diagnostic Algorithm as a "Road Map" from the First Stratification of the Patient to the Final Treatment Decision.

作者信息

Sedláčková Hana, Dolejšová Olga, Hora Milan, Ferda Jiří, Hes Ondřej, Topolčan Ondřej, Fuchsová Radka, Kučera Radek

机构信息

Department of Urology, Faculty of Medicine in Pilsen, University Hospital, 305 99 Pilsen, Czech Republic.

Department of Medical Imaging, Faculty of Medicine in Pilsen, University Hospital, 304 60 Pilsen, Czech Republic.

出版信息

Life (Basel). 2021 Apr 7;11(4):324. doi: 10.3390/life11040324.

Abstract

The diagnostics of prostate cancer are currently based on three pillars: prostate biomarker panel, imaging techniques, and histological verification. This paper presents a diagnostic algorithm that can serve as a "road map": from initial patient stratification to the final decision regarding treatment. The algorithm is based on a review of the current literature combined with our own experience. Diagnostic algorithms are a feature of an advanced healthcare system in which all steps are consciously coordinated and optimized to ensure the proper individualization of the treatment process. The prostate cancer diagnostic algorithm was created using the prostate specific antigen and in particular the Prostate Health Index in the first line of patient stratification. It then continued on the diagnostic pathway via imaging techniques, biopsy, or active surveillance, and then on to the treatment decision itself. In conclusion, the prostate cancer diagnostic algorithm presented here is a functional tool for initial patient stratification, comprehensive staging, and aggressiveness assessment. Above all, emphasis is placed on the use of the Prostate Health Index (PHI) in the first stratification of the patients as a predictor of aggressiveness and clinical stage of prostrate cancer (PCa). The inclusion of PHI in the algorithm significantly increases the accuracy and speed of the diagnostic procedure and allows to choose the optimal pathway just from the beginning. The use of advanced diagnostic techniques allows us to move towards to a more advanced level of cancer care. This diagnostics algorithm has become a standard of care in our hospital. The algorithm is continuously validated and modified based on our results.

摘要

前列腺癌的诊断目前基于三大支柱

前列腺生物标志物检测、成像技术和组织学验证。本文提出了一种可作为“路线图”的诊断算法:从患者的初始分层到关于治疗的最终决策。该算法基于对当前文献的综述并结合我们自己的经验。诊断算法是先进医疗系统的一个特征,在该系统中,所有步骤都经过有意识的协调和优化,以确保治疗过程的适当个体化。前列腺癌诊断算法在患者分层的第一线使用前列腺特异性抗原,特别是前列腺健康指数创建。然后通过成像技术、活检或主动监测继续诊断路径,然后进入治疗决策本身。总之,这里提出的前列腺癌诊断算法是用于患者初始分层、全面分期和侵袭性评估的实用工具。最重要的是,重点在于在患者的首次分层中使用前列腺健康指数(PHI)作为前列腺癌(PCa)侵袭性和临床分期的预测指标。将PHI纳入算法显著提高了诊断程序的准确性和速度,并允许从一开始就选择最佳路径。使用先进的诊断技术使我们能够迈向更高级别的癌症护理。这种诊断算法已成为我们医院的护理标准。该算法根据我们的结果不断得到验证和修改。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c99f/8068075/f5bb9278d1dd/life-11-00324-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验