Engelkamp Bernd, Schierbaum Klaus
Abteilung für Materialwissenschaft, Institut für Experimentelle Physik der Kondensierten Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
Sensors (Basel). 2021 Apr 6;21(7):2558. doi: 10.3390/s21072558.
Here, we show that the presence of adsorbed water improves the oxygen-sensing properties of Pt/TiO2 at moderate temperatures. The studied interface is based on porous plasma electrolytic oxidized titanium (PEO-TiO2) covered with platinum clusters. The electrical resistance across Pt/PEO-TiO2 is explained by an electronic depletion layer. Oxygen adsorbates further increase the depletion by inducing extrinsic interface states, which are occupied by TiO2 conduction band electrons. The high oxygen partial pressure in ambient air substantially limits the electron transport across the interface. Our DC measurements at defined levels of humidity at 30 ∘C show that adsorbed water counteracts this shortcoming, allowing oxygen sensing at room conditions. In addition, response and recovery times from temporal oxygen exposure decrease with humidity. We attribute the effects to competing adsorption processes and reactions of water with adsorbed oxygen species and/or lattice oxygen, which involve electron re-injection to the TiO2 conduction band. Elevated temperatures up to 170 ∘C attenuate the effects, presumably due to the lower binding strength to the surface of molecular water compared with oxygen adsorbates.
在此,我们表明,吸附水的存在改善了Pt/TiO₂在中等温度下的氧传感特性。所研究的界面基于覆盖有铂簇的多孔等离子体电解氧化钛(PEO-TiO₂)。Pt/PEO-TiO₂之间的电阻由电子耗尽层来解释。氧吸附质通过诱导外部界面态进一步增加耗尽,这些外部界面态被TiO₂导带电子占据。环境空气中的高氧分压极大地限制了电子通过界面的传输。我们在30℃下在规定湿度水平下进行的直流测量表明,吸附水抵消了这一缺点,使得在室温条件下能够进行氧传感。此外,随着湿度增加,对短暂氧暴露的响应和恢复时间缩短。我们将这些效应归因于竞争性吸附过程以及水与吸附的氧物种和/或晶格氧的反应,这些反应涉及电子重新注入到TiO₂导带。高达170℃的升高温度会减弱这些效应,这可能是由于与氧吸附质相比,分子水与表面的结合强度较低。