Suppr超能文献

使用CVA子空间方法得到的季节性协整状态空间模型估计量的渐近性质

Asymptotic Properties of Estimators for Seasonally Cointegrated State Space Models Obtained Using the CVA Subspace Method.

作者信息

Bauer Dietmar, Buschmeier Rainer

机构信息

Department of Business Administration and Economics, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany.

出版信息

Entropy (Basel). 2021 Apr 8;23(4):436. doi: 10.3390/e23040436.

Abstract

This paper investigates the asymptotic properties of estimators obtained from the so called CVA (canonical variate analysis) subspace algorithm proposed by Larimore (1983) in the case when the data is generated using a minimal state space system containing unit roots at the seasonal frequencies such that the yearly difference is a stationary vector autoregressive moving average (VARMA) process. The empirically most important special cases of such data generating processes are the I(1) case as well as the case of seasonally integrated quarterly or monthly data. However, increasingly also datasets with a higher sampling rate such as hourly, daily or weekly observations are available, for example for electricity consumption. In these cases the vector error correction representation (VECM) of the vector autoregressive (VAR) model is not very helpful as it demands the parameterization of one matrix per seasonal unit root. Even for weekly series this amounts to 52 matrices using yearly periodicity, for hourly data this is prohibitive. For such processes estimation using quasi-maximum likelihood maximization is extremely hard since the Gaussian likelihood typically has many local maxima while the parameter space often is high-dimensional. Additionally estimating a large number of models to test hypotheses on the cointegrating rank at the various unit roots becomes practically impossible for weekly data, for example. This paper shows that in this setting CVA provides consistent estimators of the transfer function generating the data, making it a valuable initial estimator for subsequent quasi-likelihood maximization. Furthermore, the paper proposes new tests for the cointegrating rank at the seasonal frequencies, which are easy to compute and numerically robust, making the method suitable for automatic modeling. A simulation study demonstrates by example that for processes of moderate to large dimension the new tests may outperform traditional tests based on long VAR approximations in sample sizes typically found in quarterly macroeconomic data. Further simulations show that the unit root tests are robust with respect to different distributions for the innovations as well as with respect to GARCH-type conditional heteroskedasticity. Moreover, an application to Kaggle data on hourly electricity consumption by different American providers demonstrates the usefulness of the method for applications. Therefore the CVA algorithm provides a very useful initial guess for subsequent quasi maximum likelihood estimation and also delivers relevant information on the cointegrating ranks at the different unit root frequencies. It is thus a useful tool for example in (but not limited to) automatic modeling applications where a large number of time series involving a substantial number of variables need to be modelled in parallel.

摘要

本文研究了在数据由包含季节性频率单位根的最小状态空间系统生成,使得年度差分是平稳向量自回归移动平均(VARMA)过程的情况下,从Larimore(1983)提出的所谓CVA(典型变量分析)子空间算法获得的估计量的渐近性质。这类数据生成过程在经验上最重要的特殊情况是I(1)情形以及季节性整合的季度或月度数据情形。然而,越来越多的具有更高采样率的数据集也可供使用,例如每小时、每日或每周的观测数据,比如电力消耗数据。在这些情况下,向量自回归(VAR)模型的向量误差修正表示(VECM)并不是很有用,因为它要求为每个季节性单位根参数化一个矩阵。即使对于每周序列,使用年度周期性也需要52个矩阵,对于每小时数据这是不可行的。对于这类过程,使用准最大似然最大化进行估计极其困难,因为高斯似然通常有许多局部最大值,而参数空间往往是高维的。此外,例如对于每周数据,估计大量模型以检验不同单位根处的协整秩假设实际上变得不可能。本文表明,在这种情况下,CVA提供了生成数据的传递函数的一致估计量,使其成为后续准似然最大化的有价值的初始估计量。此外,本文提出了针对季节性频率协整秩的新检验,这些检验易于计算且在数值上稳健,使得该方法适用于自动建模。一项模拟研究通过示例表明,对于中等到大维度的过程,在季度宏观经济数据中常见的样本量下,新检验可能优于基于长VAR近似的传统检验。进一步的模拟表明,单位根检验对于创新的不同分布以及GARCH型条件异方差是稳健的。此外,对不同美国供应商每小时电力消耗的Kaggle数据的应用证明了该方法在实际应用中的有用性。因此,CVA算法为后续的准最大似然估计提供了非常有用的初始猜测,并且还提供了不同单位根频率处协整秩的相关信息。因此,它是例如(但不限于)自动建模应用中的一个有用工具,在这些应用中需要并行建模大量涉及大量变量的时间序列。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3f6/8068347/fbc7a9e9f311/entropy-23-00436-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验