Nduka Uchenna C, Ugah Tobias E, Izunobi Chinyeaka H
Department of Statistics, University of Nigeria, Nsukka, Nigeria.
Department of Statistics, Federal University of Technology, Owerri, Nigeria.
J Appl Stat. 2020 Mar 16;48(4):693-711. doi: 10.1080/02664763.2020.1742297. eCollection 2021.
This paper considers the vector autoregressive model of order p, VAR(), with multivariate error distributions, the latter being more prevalent in real life than the usual multivariate normal distribution. It is believed that the maximum-likelihood equations for the multivariate distribution have convergence problem, hence we develop estimation procedures for VAR() model using the normal mean-variance mixture representation of multivariate distribution. The procedure relies on the computational ease available in Expectation Maximization-based algorithms. The estimators obtained are explicit functions of sample observations and therefore are easy to compute. Extensive simulation experiments show that the estimators have negligible bias and are considerably more efficient than an existing method that uses the least-squares error approach. It is shown that the proposed estimators are robust to plausible deviations from an assumed distribution and hence are more advantageous when compared with the other estimator. One real-life example is given for illustration purposes.
本文考虑具有多元误差分布的p阶向量自回归模型VAR(p),后者在现实生活中比通常的多元正态分布更为普遍。人们认为多元分布的最大似然方程存在收敛问题,因此我们利用多元分布的正态均值 - 方差混合表示来开发VAR(p)模型的估计程序。该程序依赖于基于期望最大化算法的计算简便性。所获得的估计量是样本观测值的显式函数,因此易于计算。大量的模拟实验表明,这些估计量的偏差可忽略不计,并且比使用最小二乘误差方法的现有方法效率高得多。结果表明,所提出的估计量对于与假设分布的合理偏差具有鲁棒性,因此与其他估计量相比更具优势。为了说明目的给出了一个实际例子。