Research Centre for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, 69118 Heidelberg, Germany.
Department of Developmental Biology, Center for Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany.
Int J Mol Sci. 2021 Apr 2;22(7):3726. doi: 10.3390/ijms22073726.
Osteoarthritis (OA) represents one major cause of disability worldwide still evading efficient pharmacological or cellular therapies. Severe degeneration of extracellular cartilage matrix precedes the loss of mobility and disabling pain perception in affected joints. Recent studies showed that a reduced heparan sulfate (HS) content protects cartilage from degradation in OA-animal models of joint destabilization but the underlying mechanisms remained unclear. We aimed to clarify whether low HS-content alters the mechano-response of chondrocytes and to uncover pathways relevant for HS-related chondro-protection in response to loading. Tissue-engineered cartilage with HS-deficiency was generated from rib chondrocytes of mice carrying a hypomorphic allele of (), one of the main HS-synthesizing enzymes, and wildtype (WT) littermate controls. Engineered cartilage matured for 2 weeks was exposed to cyclic unconfined compression in a bioreactor. The molecular loading response was determined by transcriptome profiling, bioinformatic data processing, and qPCR. HS-deficient chondrocytes expressed 3-6% of WT -mRNA levels. Both groups similarly raised , and levels during maturation. However, HS-deficient chondrocytes synthesized and deposited 50% more GAG/DNA. TGFβ and FGF2-sensitivity of chondrocytes was similar to WT cells but their response to BMP-stimulation was enhanced. Loading induced similar activation of mechano-sensitive ERK and P38-signaling in WT and HS-reduced chondrocytes. Transcriptome analysis reflected regulation of cell migration as major load-induced biological process with similar stimulation of common (, , , and ) as well as novel mechano-regulated genes ( and ). Remarkably, only -hypomorphic cartilage responded to loading by an expression signature of negative regulation of apoptosis with pro-apoptotic being selectively down-regulated. HS-deficiency enhanced BMP-sensitivity, GAG-production and fostered an anti-apoptotic expression signature after loading, all of which may protect cartilage from load-induced erosion.
骨关节炎 (OA) 是全球主要的致残原因之一,但目前仍缺乏有效的药物或细胞疗法。细胞外软骨基质的严重退化先于受影响关节的运动丧失和致残性疼痛感知。最近的研究表明,肝素硫酸酯 (HS) 含量降低可保护软骨免受 OA 动物模型中关节失稳引起的降解,但潜在机制尚不清楚。我们旨在阐明低 HS 含量是否会改变软骨细胞的力学反应,并揭示与 HS 相关的软骨保护在应对负荷时的相关途径。利用携带低功能等位基因 (), 一种主要的 HS 合成酶之一的小鼠肋软骨细胞,生成 HS 缺陷型组织工程软骨,并与野生型 (WT) 同窝对照进行比较。在生物反应器中对成熟 2 周的工程软骨进行循环无约束压缩。通过转录组谱分析、生物信息学数据分析和 qPCR 确定分子加载反应。HS 缺陷型软骨细胞表达的 WT- mRNA 水平为 3-6%。两组在成熟过程中均相似地提高了、和水平。然而,HS 缺陷型软骨细胞合成并沉积了 50%更多的 GAG/DNA。TGFβ 和 FGF2 对 软骨细胞的敏感性与 WT 细胞相似,但它们对 BMP 刺激的反应增强。加载在 WT 和 HS 减少的软骨细胞中诱导相似的机械敏感 ERK 和 P38 信号激活。转录组分析反映了细胞迁移的调节作为主要的负荷诱导生物学过程,共同(、、、和)以及新型机械调节基因(和)得到相似的刺激。值得注意的是,只有 -低功能软骨对加载的反应是通过凋亡的负调节表达特征,选择性地下调促凋亡 。HS 缺陷增强了 BMP 敏感性、GAG 产生,并在加载后促进了抗凋亡表达特征,所有这些都可能保护软骨免受负荷引起的侵蚀。