Makkawi Khoder, Ait-Tmazirte Nourdine, El Badaoui El Najjar Maan, Moubayed Nazih
CRIStAL, Centre de Recherche en Informatique Signal et Automatique de Lille, Université de Lille, CNRS, UMR 9189, F-59000 Lille, France.
Azm Center for Research in Biotechnology and Its Application, EDST, Lebanese University, Tripoli 1300, Lebanon.
Entropy (Basel). 2021 Apr 14;23(4):463. doi: 10.3390/e23040463.
When applying a diagnostic technique to complex systems, whose dynamics, constraints, and environment evolve over time, being able to re-evaluate the residuals that are capable of detecting defaults and proposing the most appropriate ones can quickly prove to make sense. For this purpose, the concept of adaptive diagnosis is introduced. In this work, the contributions of information theory are investigated in order to propose a Fault-Tolerant multi-sensor data fusion framework. This work is part of studies proposing an architecture combining a stochastic filter for state estimation with a diagnostic layer with the aim of proposing a safe and accurate state estimation from potentially inconsistent or erroneous sensors measurements. From the design of the residuals, using α-Rényi Divergence (α-RD), to the optimization of the decision threshold, through the establishment of a function that is dedicated to the choice of α at each moment, we detail each step of the proposed automated decision-support framework. We also dwell on: (1) the consequences of the degree of freedom provided by this α parameter and on (2) the application-dictated policy to design the α tuning function playing on the overall performance of the system (detection rate, false alarms, and missed detection rates). Finally, we present a real application case on which this framework has been tested. The problem of multi-sensor localization, integrating sensors whose operating range is variable according to the environment crossed, is a case study to illustrate the contributions of such an approach and show the performance.
当将诊断技术应用于复杂系统时,其动态特性、约束条件和环境会随时间演变,能够重新评估能够检测故障并提出最合适故障的残差,很快就会证明是有意义的。为此,引入了自适应诊断的概念。在这项工作中,研究了信息论的贡献,以提出一种容错多传感器数据融合框架。这项工作是提出一种架构的研究的一部分,该架构将用于状态估计的随机滤波器与诊断层相结合,旨在根据潜在不一致或错误的传感器测量结果提出安全准确的状态估计。从使用α-雷尼散度(α-RD)设计残差,到优化决策阈值,再到建立一个在每个时刻专门用于选择α的函数,我们详细介绍了所提出的自动决策支持框架的每一步。我们还详细讨论了:(1)这个α参数提供的自由度的影响,以及(2)应用规定的策略来设计影响系统整体性能(检测率、误报率和漏检率)的α调整函数。最后,我们展示了一个对该框架进行测试的实际应用案例。多传感器定位问题,即集成根据所穿越环境其工作范围可变的传感器,是一个案例研究,用于说明这种方法的贡献并展示其性能。