Suppr超能文献

基于神经网络的超表面辐射模式预测方法。

Radiation Pattern Prediction for Metasurfaces: A Neural Network-Based Approach.

机构信息

NaNoNetworking Center in Catalonia (N3Cat), Universitat Politècnica de Catalunya, 08034 Barcelona, Spain.

Foundation for Research and Technology Hellas, 71110 Heraklion, Greece.

出版信息

Sensors (Basel). 2021 Apr 14;21(8):2765. doi: 10.3390/s21082765.

Abstract

As the current standardization for the 5G networks nears completion, work towards understanding the potential technologies for the 6G wireless networks is already underway. One of these potential technologies for the 6G networks is reconfigurable intelligent surfaces. They offer unprecedented degrees of freedom towards engineering the wireless channel, i.e., the ability to modify the characteristics of the channel whenever and however required. Nevertheless, such properties demand that the response of the associated metasurface is well understood under all possible operational conditions. While an understanding of the radiation pattern characteristics can be obtained through either analytical models or full-wave simulations, they suffer from inaccuracy and extremely high computational complexity, respectively. Hence, in this paper, we propose a neural network-based approach that enables a fast and accurate characterization of the metasurface response. We analyze multiple scenarios and demonstrate the capabilities and utility of the proposed methodology. Concretely, we show that this method can learn and predict the parameters governing the reflected wave radiation pattern with an accuracy of a full-wave simulation (98.8-99.8%) and the time and computational complexity of an analytical model. The aforementioned result and methodology will be of specific importance for the design, fault tolerance, and maintenance of the thousands of reconfigurable intelligent surfaces that will be deployed in the 6G network environment.

摘要

随着当前 5G 网络的标准化工作接近完成,针对 6G 无线网络潜在技术的研究已经在进行中。这些 6G 网络的潜在技术之一是可重构智能表面。它们为工程无线信道提供了前所未有的自由度,即能够根据需要随时修改信道的特性。然而,这些特性要求充分理解相关的超表面在所有可能的工作条件下的响应。虽然辐射方向图特性可以通过分析模型或全波模拟来获得,但它们分别存在精度和极高的计算复杂度方面的不足。因此,在本文中,我们提出了一种基于神经网络的方法,可以快速准确地描述超表面的响应。我们分析了多个场景,并展示了所提出方法的能力和实用性。具体来说,我们表明,该方法可以以全波模拟(98.8-99.8%)的精度和分析模型的时间和计算复杂度来学习和预测控制反射波辐射方向图的参数。上述结果和方法对于在 6G 网络环境中部署的数千个可重构智能表面的设计、容错和维护将具有特殊重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd0a/8070797/bd4afb80554f/sensors-21-02765-g001.jpg

相似文献

1
Radiation Pattern Prediction for Metasurfaces: A Neural Network-Based Approach.
Sensors (Basel). 2021 Apr 14;21(8):2765. doi: 10.3390/s21082765.
2
Multi-Functional Reconfigurable Intelligent Surfaces for Enhanced Sensing and Communication.
Sensors (Basel). 2023 Oct 18;23(20):8561. doi: 10.3390/s23208561.
4
Reconfigurable Metasurface: Enabling Tunable Reflection in 6G Wireless Communications.
Sensors (Basel). 2023 Nov 14;23(22):9166. doi: 10.3390/s23229166.
5
Passive Type Reconfigurable Intelligent Surface: Measurement of Radiation Patterns.
Micromachines (Basel). 2023 Apr 5;14(4):818. doi: 10.3390/mi14040818.
6
Spatiotemporal Dielectric Metasurfaces for Unidirectional Propagation and Reconfigurable Steering of Terahertz Beams.
Adv Mater. 2020 Jul;32(28):e2001418. doi: 10.1002/adma.202001418. Epub 2020 May 28.
10
Multi-Beam Steering for 6G Communications Based on Graphene Metasurfaces.
Sensors (Basel). 2021 Jul 13;21(14):4784. doi: 10.3390/s21144784.

引用本文的文献

1
Artificial Intelligence in Meta-optics.
Chem Rev. 2022 Oct 12;122(19):15356-15413. doi: 10.1021/acs.chemrev.2c00012. Epub 2022 Jun 24.

本文引用的文献

1
A multiband circular polarization selective metasurface for microwave applications.
Sci Rep. 2021 Jan 19;11(1):1774. doi: 10.1038/s41598-021-81435-w.
2
Intelligent Electromagnetic Sensing with Learnable Data Acquisition and Processing.
Patterns (N Y). 2020 Apr 10;1(1):100006. doi: 10.1016/j.patter.2020.100006.
3
Metasurface-assisted massive backscatter wireless communication with commodity Wi-Fi signals.
Nat Commun. 2020 Aug 6;11(1):3926. doi: 10.1038/s41467-020-17808-y.
4
Learned Integrated Sensing Pipeline: Reconfigurable Metasurface Transceivers as Trainable Physical Layer in an Artificial Neural Network.
Adv Sci (Weinh). 2019 Dec 6;7(3):1901913. doi: 10.1002/advs.201901913. eCollection 2020 Feb.
5
Deep Learning Meets Nanophotonics: A Generalized Accurate Predictor for Near Fields and Far Fields of Arbitrary 3D Nanostructures.
Nano Lett. 2020 Jan 8;20(1):329-338. doi: 10.1021/acs.nanolett.9b03971. Epub 2019 Dec 13.
6
Deep Learning: A Rapid and Efficient Route to Automatic Metasurface Design.
Adv Sci (Weinh). 2019 Apr 19;6(12):1900128. doi: 10.1002/advs.201900128. eCollection 2019 Jun 19.
7
Free-Form Diffractive Metagrating Design Based on Generative Adversarial Networks.
ACS Nano. 2019 Aug 27;13(8):8872-8878. doi: 10.1021/acsnano.9b02371. Epub 2019 Jul 22.
8
Reprogrammable Graphene-based Metasurface Mirror with Adaptive Focal Point for THz Imaging.
Sci Rep. 2019 Feb 27;9(1):2868. doi: 10.1038/s41598-019-39266-3.
10
Generative Model for the Inverse Design of Metasurfaces.
Nano Lett. 2018 Oct 10;18(10):6570-6576. doi: 10.1021/acs.nanolett.8b03171. Epub 2018 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验