NaNoNetworking Center in Catalonia (N3Cat), Universitat Politècnica de Catalunya, 08034 Barcelona, Spain.
Foundation for Research and Technology Hellas, 71110 Heraklion, Greece.
Sensors (Basel). 2021 Apr 14;21(8):2765. doi: 10.3390/s21082765.
As the current standardization for the 5G networks nears completion, work towards understanding the potential technologies for the 6G wireless networks is already underway. One of these potential technologies for the 6G networks is reconfigurable intelligent surfaces. They offer unprecedented degrees of freedom towards engineering the wireless channel, i.e., the ability to modify the characteristics of the channel whenever and however required. Nevertheless, such properties demand that the response of the associated metasurface is well understood under all possible operational conditions. While an understanding of the radiation pattern characteristics can be obtained through either analytical models or full-wave simulations, they suffer from inaccuracy and extremely high computational complexity, respectively. Hence, in this paper, we propose a neural network-based approach that enables a fast and accurate characterization of the metasurface response. We analyze multiple scenarios and demonstrate the capabilities and utility of the proposed methodology. Concretely, we show that this method can learn and predict the parameters governing the reflected wave radiation pattern with an accuracy of a full-wave simulation (98.8-99.8%) and the time and computational complexity of an analytical model. The aforementioned result and methodology will be of specific importance for the design, fault tolerance, and maintenance of the thousands of reconfigurable intelligent surfaces that will be deployed in the 6G network environment.
随着当前 5G 网络的标准化工作接近完成,针对 6G 无线网络潜在技术的研究已经在进行中。这些 6G 网络的潜在技术之一是可重构智能表面。它们为工程无线信道提供了前所未有的自由度,即能够根据需要随时修改信道的特性。然而,这些特性要求充分理解相关的超表面在所有可能的工作条件下的响应。虽然辐射方向图特性可以通过分析模型或全波模拟来获得,但它们分别存在精度和极高的计算复杂度方面的不足。因此,在本文中,我们提出了一种基于神经网络的方法,可以快速准确地描述超表面的响应。我们分析了多个场景,并展示了所提出方法的能力和实用性。具体来说,我们表明,该方法可以以全波模拟(98.8-99.8%)的精度和分析模型的时间和计算复杂度来学习和预测控制反射波辐射方向图的参数。上述结果和方法对于在 6G 网络环境中部署的数千个可重构智能表面的设计、容错和维护将具有特殊重要性。