Del Hougne Philipp, Imani Mohammadreza F, Diebold Aaron V, Horstmeyer Roarke, Smith David R
Institut de Physique de Nice CNRS UMR 7010 Université Côte d'Azur Nice 06108 France.
Center for Metamaterials and Integrated Plasmonics Department of Electrical and Computer Engineering Duke University Durham NC 27708 USA.
Adv Sci (Weinh). 2019 Dec 6;7(3):1901913. doi: 10.1002/advs.201901913. eCollection 2020 Feb.
The rapid proliferation of intelligent systems (e.g., fully autonomous vehicles) in today's society relies on sensors with low latency and computational effort. Yet current sensing systems ignore most available a priori knowledge, notably in the design of the hardware level, such that they fail to extract as much task-relevant information per measurement as possible. Here, a "learned integrated sensing pipeline" (LISP), including in an end-to-end fashion both physical and processing layers, is shown to enable joint learning of optimal measurement strategies and a matching processing algorithm, making use of a priori knowledge on task, scene, and measurement constraints. Numerical results demonstrate accuracy improvements around 15% for object recognition tasks with limited numbers of measurements, using dynamic metasurface apertures capable of transceiving programmable microwave patterns. Moreover, it is concluded that the optimal learned microwave patterns are nonintuitive, underlining the importance of the LISP paradigm in current sensorization trends.
当今社会中智能系统(如全自动车辆)的迅速普及依赖于低延迟和低计算量的传感器。然而,当前的传感系统忽略了大多数可用的先验知识,尤其是在硬件层面的设计上,以至于它们无法在每次测量中提取尽可能多的与任务相关的信息。在此,一种“学习型集成传感管道”(LISP)被证明能够以端到端的方式对物理层和处理层进行联合学习,从而利用关于任务、场景和测量约束的先验知识来实现最优测量策略和匹配处理算法的联合学习。数值结果表明,使用能够收发可编程微波模式的动态超表面孔径,在测量次数有限的情况下,物体识别任务的准确率提高了约15%。此外,得出的结论是,最优的学习微波模式并不直观,这凸显了LISP范式在当前传感趋势中的重要性。