Theodorakis Nikolaos, Saravanou Sofia-Falia, Kouli Nikoleta-Paraskevi, Iatridi Zacharoula, Tsitsilianis Constantinos
Department of Chemical Engineering, University of Patras, 26500 Patras, Greece.
Polymers (Basel). 2021 Apr 10;13(8):1228. doi: 10.3390/polym13081228.
We report the preparation of mesoporous silica nanoparticles covered by layer by layer (LbL) oppositely charged weak polyelectrolytes, comprising poly(allylamine hydrochloride) (PAH) and a sodium alginate, highly grafted by -isopropylacrylamide/-tert-butylacrylamide random copolymers, NaALG-g-P(NIPAMNtBAM) (NaALG-g). Thanks to the pH dependence of the degree of ionization of the polyelectrolytes and the LCST-type thermosensitivity of the grafting chains of the NaALG-g, the as-prepared hybrid nanoparticles (hNP) exhibit pH/thermo-responsive drug delivery capabilities. The release kinetics of rhodamine B (RB, model drug) can be controlled by the number of PAH/NaALG-g bilayers and more importantly by the environmental conditions, namely, pH and temperature. As observed, the increase of pH and/or temperature accelerates the RB release under sink conditions. The same NaALG-g was used as gelator to fabricate a hNP@NaALG-g hydrogel composite. This formulation forms a viscous solution at room temperature, and it is transformed to a self-assembling hydrogel (sol-gel transition) upon heating at physiological temperature provided that its T was regulated at 30.7 °C, by the NtBAM hydrophobic monomer incorporation in the side chains. It exhibits excellent injectability thanks to its combined thermo- and shear-responsiveness. The hNP@NaALG-g hydrogel composite, encapsulating hNP covered with one bilayer, exhibited pH-responsive sustainable drug delivery. The presented highly tunable drug delivery system (DDS) (hNP and/or composite hydrogel) might be useful for biomedical potential applications.
我们报道了通过层层(LbL)组装带相反电荷的弱聚电解质制备介孔二氧化硅纳米颗粒的方法,这些聚电解质包括聚(烯丙胺盐酸盐)(PAH)和海藻酸钠,海藻酸钠高度接枝了异丙基丙烯酰胺/叔丁基丙烯酰胺无规共聚物,即NaALG-g-P(NIPAMNtBAM)(NaALG-g)。由于聚电解质电离度的pH依赖性以及NaALG-g接枝链的最低临界溶液温度(LCST)型热敏感性,所制备的杂化纳米颗粒(hNP)具有pH/热响应药物递送能力。罗丹明B(RB,模型药物)的释放动力学可以通过PAH/NaALG-g双层的数量来控制,更重要的是可以通过环境条件,即pH和温度来控制。如观察到的,在漏槽条件下,pH和/或温度的升高会加速RB的释放。相同的NaALG-g用作胶凝剂来制备hNP@NaALG-g水凝胶复合材料。该制剂在室温下形成粘性溶液,并且如果通过在侧链中引入NtBAM疏水单体将其浊点调节到30.7°C,则在生理温度下加热时会转变为自组装水凝胶(溶胶-凝胶转变)。由于其热响应和剪切响应的结合,它具有出色的可注射性。包裹有一层双层的hNP的hNP@NaALG-g水凝胶复合材料表现出pH响应性的可持续药物递送。所提出的高度可调谐药物递送系统(DDS)(hNP和/或复合水凝胶)可能对生物医学潜在应用有用。