Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Str., 119991 Moscow, Russia.
Moscow Institute of Physics and Technology, 9 Institutskii per., Dolgoprudny, 141700 Moscow Region, Russia.
Sensors (Basel). 2021 Apr 15;21(8):2802. doi: 10.3390/s21082802.
The ever-increasing use of magnetic particle bioconjugates (MPB) in biosensors calls for methods of comprehensive characterization of their interaction with targets. Label-free optical sensors commonly used for studying inter-molecular interactions have limited potential for MPB because of their large size and multi-component non-transparent structure. We present an easy-to-use method that requires only three 20-min express measurements to determine the key parameters for selection of optimal MPB for a biosensor: kinetic and equilibrium characteristics, and a fraction of biomolecules on the MPB surface that are capable of active targeting. The method also provides a prognostic dependence of MPB targeting efficiency upon interaction duration and sample volume. These features are possible due to joining a magnetic lateral flow assay, a highly sensitive sensor for MPB detection by the magnetic particle quantification technique, and a novel mathematical model that explicitly describes the MPB-target interactions and does not comprise parameters to be fitted additionally. The method was demonstrated by experiments on MPB targeting of cardiac troponin I and staphylococcal enterotoxin B. The validation by an independent label-free technique of spectral-correlation interferometry showed good correlation between the results obtained by both methods. The presented method can be applied to other targets for faster development and selection of MPB for affinity sensors, analytical technologies, and realization of novel concepts of MPB-based biosensing in vivo.
越来越多地将磁性粒子生物缀合物 (MPB) 用于生物传感器,这就需要对其与靶标相互作用进行全面表征的方法。由于其尺寸较大且具有多组分不透明结构,常用于研究分子间相互作用的无标记光学传感器对于 MPB 的应用潜力有限。我们提出了一种易于使用的方法,仅需进行三次 20 分钟的快速测量,即可确定为生物传感器选择最佳 MPB 的关键参数:动力学和平衡特性,以及 MPB 表面上能够进行主动靶向的生物分子部分。该方法还提供了 MPB 靶向效率随相互作用持续时间和样品体积变化的预测依赖性。这些特性是由于将磁性横向流动测定法、用于通过磁性粒子定量技术检测 MPB 的高灵敏度传感器,以及一个新的数学模型结合在一起而实现的,该模型明确描述了 MPB-靶标相互作用,并且不包含需要额外拟合的参数。该方法通过对心肌钙蛋白 I 和葡萄球菌肠毒素 B 的 MPB 靶向实验进行了验证。通过独立的无标记技术光谱相关干涉测量法进行的验证表明,两种方法的结果具有良好的相关性。所提出的方法可应用于其他靶标,以加快亲和传感器、分析技术中 MPB 的开发和选择,并实现基于 MPB 的生物传感的新概念在体内的应用。
ACS Appl Mater Interfaces. 2020-1-14
Comb Chem High Throughput Screen. 2009-9
Biosens Bioelectron. 2022-4-1
Biology (Basel). 2025-2-7
Int J Mol Sci. 2024-3-7
Nanotechnology. 2019-9-6
Sensors (Basel). 2019-3-13
Sensors (Basel). 2018-11-24