文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于生物传感的磁性粒子生物缀合物的靶标结合和动力学的快速且易于使用的准确特性分析方法。

Rapid and Easy-to-Use Method for Accurate Characterization of Target Binding and Kinetics of Magnetic Particle Bioconjugates for Biosensing.

机构信息

Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Str., 119991 Moscow, Russia.

Moscow Institute of Physics and Technology, 9 Institutskii per., Dolgoprudny, 141700 Moscow Region, Russia.

出版信息

Sensors (Basel). 2021 Apr 15;21(8):2802. doi: 10.3390/s21082802.


DOI:10.3390/s21082802
PMID:33921145
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8071512/
Abstract

The ever-increasing use of magnetic particle bioconjugates (MPB) in biosensors calls for methods of comprehensive characterization of their interaction with targets. Label-free optical sensors commonly used for studying inter-molecular interactions have limited potential for MPB because of their large size and multi-component non-transparent structure. We present an easy-to-use method that requires only three 20-min express measurements to determine the key parameters for selection of optimal MPB for a biosensor: kinetic and equilibrium characteristics, and a fraction of biomolecules on the MPB surface that are capable of active targeting. The method also provides a prognostic dependence of MPB targeting efficiency upon interaction duration and sample volume. These features are possible due to joining a magnetic lateral flow assay, a highly sensitive sensor for MPB detection by the magnetic particle quantification technique, and a novel mathematical model that explicitly describes the MPB-target interactions and does not comprise parameters to be fitted additionally. The method was demonstrated by experiments on MPB targeting of cardiac troponin I and staphylococcal enterotoxin B. The validation by an independent label-free technique of spectral-correlation interferometry showed good correlation between the results obtained by both methods. The presented method can be applied to other targets for faster development and selection of MPB for affinity sensors, analytical technologies, and realization of novel concepts of MPB-based biosensing in vivo.

摘要

越来越多地将磁性粒子生物缀合物 (MPB) 用于生物传感器,这就需要对其与靶标相互作用进行全面表征的方法。由于其尺寸较大且具有多组分不透明结构,常用于研究分子间相互作用的无标记光学传感器对于 MPB 的应用潜力有限。我们提出了一种易于使用的方法,仅需进行三次 20 分钟的快速测量,即可确定为生物传感器选择最佳 MPB 的关键参数:动力学和平衡特性,以及 MPB 表面上能够进行主动靶向的生物分子部分。该方法还提供了 MPB 靶向效率随相互作用持续时间和样品体积变化的预测依赖性。这些特性是由于将磁性横向流动测定法、用于通过磁性粒子定量技术检测 MPB 的高灵敏度传感器,以及一个新的数学模型结合在一起而实现的,该模型明确描述了 MPB-靶标相互作用,并且不包含需要额外拟合的参数。该方法通过对心肌钙蛋白 I 和葡萄球菌肠毒素 B 的 MPB 靶向实验进行了验证。通过独立的无标记技术光谱相关干涉测量法进行的验证表明,两种方法的结果具有良好的相关性。所提出的方法可应用于其他靶标,以加快亲和传感器、分析技术中 MPB 的开发和选择,并实现基于 MPB 的生物传感的新概念在体内的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1057/8071512/42e2e25471ed/sensors-21-02802-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1057/8071512/75f768d23a48/sensors-21-02802-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1057/8071512/1d37ea59c089/sensors-21-02802-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1057/8071512/fbe133544f31/sensors-21-02802-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1057/8071512/42e2e25471ed/sensors-21-02802-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1057/8071512/75f768d23a48/sensors-21-02802-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1057/8071512/1d37ea59c089/sensors-21-02802-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1057/8071512/fbe133544f31/sensors-21-02802-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1057/8071512/42e2e25471ed/sensors-21-02802-g004.jpg

相似文献

[1]
Rapid and Easy-to-Use Method for Accurate Characterization of Target Binding and Kinetics of Magnetic Particle Bioconjugates for Biosensing.

Sensors (Basel). 2021-4-15

[2]
Multiplex Label-Free Kinetic Characterization of Antibodies for Rapid Sensitive Cardiac Troponin I Detection Based on Functionalized Magnetic Nanotags.

Int J Mol Sci. 2022-4-19

[3]
Label-Free Analysis of Multivalent Protein Binding Using Bioresponsive Nanogels and Surface Plasmon Resonance (SPR).

ACS Appl Mater Interfaces. 2020-1-14

[4]
Data on characterization of glass biochips and validation of the label-free biosensor for detection of autoantibodies in human serum.

Data Brief. 2020-4-30

[5]
Label-free detection of biomolecular interactions using BioLayer interferometry for kinetic characterization.

Comb Chem High Throughput Screen. 2009-9

[6]
Multiplex label-free biosensor for detection of autoantibodies in human serum: Tool for new kinetics-based diagnostics of autoimmune diseases.

Biosens Bioelectron. 2020-7-1

[7]
Designing binding kinetic assay on the bio-layer interferometry (BLI) biosensor to characterize antibody-antigen interactions.

Anal Biochem. 2017-11-1

[8]
Applications of Surface Plasmon Resonance and Biolayer Interferometry for Virus-Ligand Binding.

Viruses. 2022-3-29

[9]
Sensitive and real-time detection of IgG using interferometric reflecting imaging sensor system.

Biosens Bioelectron. 2022-4-1

[10]
Direct Detection of Low-Molecular-Weight Compounds in 2D and 3D Aptasensors by Biolayer Interferometry.

ACS Sens. 2020-8-28

引用本文的文献

[1]
Sequence-Only Prediction of Super-Enhancers in Human Cell Lines Using Transformer Models.

Biology (Basel). 2025-2-7

[2]
Super-Enhancers and Their Parts: From Prediction Efforts to Pathognomonic Status.

Int J Mol Sci. 2024-3-7

[3]
Quantitative Rapid Magnetic Immunoassay for Sensitive Toxin Detection in Food: Non-Covalent Functionalization of Nanolabels vs. Covalent Immobilization.

Toxins (Basel). 2023-12-20

[4]
Experimental Validation and Prediction of Super-Enhancers: Advances and Challenges.

Cells. 2023-4-19

[5]
A Straightforward Method for the Development of Positively Charged Gold Nanoparticle-Based Vectors for Effective siRNA Delivery.

Molecules. 2023-4-8

[6]
Kinetic Analysis of Prostate-Specific Antigen Interaction with Monoclonal Antibodies for Development of a Magnetic Immunoassay Based on Nontransparent Fiber Structures.

Molecules. 2022-11-21

[7]
Method of kinetic characterization of immunoreagents for development of express high-sensitive assays for detection of ochratoxin A and heart fatty acids binding protein.

MethodsX. 2022-11-8

[8]
Highly Sensitive Nanomagnetic Quantification of Extracellular Vesicles by Immunochromatographic Strips: A Tool for Liquid Biopsy.

Nanomaterials (Basel). 2022-5-6

[9]
Multiplex Label-Free Kinetic Characterization of Antibodies for Rapid Sensitive Cardiac Troponin I Detection Based on Functionalized Magnetic Nanotags.

Int J Mol Sci. 2022-4-19

[10]
Systematic Review of Cancer Targeting by Nanoparticles Revealed a Global Association between Accumulation in Tumors and Spleen.

Int J Mol Sci. 2021-12-1

本文引用的文献

[1]
Multiplex label-free biosensor for detection of autoantibodies in human serum: Tool for new kinetics-based diagnostics of autoimmune diseases.

Biosens Bioelectron. 2020-7-1

[2]
Magnetic nanoparticles in nanomedicine: a review of recent advances.

Nanotechnology. 2019-9-6

[3]
Algorithms for immunochromatographic assay: review and impact on future application.

Analyst. 2019-9-23

[4]
Glycosylation influences activity, stability and immobilization of the feruloyl esterase 1a from Myceliophthora thermophila.

AMB Express. 2019-8-12

[5]
Direct quantification of surface coverage of antibody in IgG-Gold nanoparticles conjugates.

Talanta. 2019-6-10

[6]
Analytical Platform with Selectable Assay Parameters Based on Three Functions of Magnetic Nanoparticles: Demonstration of Highly Sensitive Rapid Quantitation of Staphylococcal Enterotoxin B in Food.

Anal Chem. 2019-7-22

[7]
Recent Advances in Surface Plasmon Resonance Imaging Sensors.

Sensors (Basel). 2019-3-13

[8]
Optical Biosensors for Label-Free Detection of Small Molecules.

Sensors (Basel). 2018-11-24

[9]
Advanced Smart Nanomaterials with Integrated Logic-Gating and Biocomputing: Dawn of Theranostic Nanorobots.

Chem Rev. 2018-9-20

[10]
Ultrasensitive quantitative detection of small molecules with rapid lateral-flow assay based on high-affinity bifunctional ligand and magnetic nanolabels.

Anal Chim Acta. 2018-7-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索