Laboratory of Nanobiotechnology, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia.
Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia.
Int J Mol Sci. 2021 Dec 1;22(23):13011. doi: 10.3390/ijms222313011.
Active targeting of nanoparticles toward tumors is one of the most rapidly developing topics in nanomedicine. Typically, this strategy involves the addition of cancer-targeting biomolecules to nanoparticles, and studies on this topic have mainly focused on the localization of such formulations in tumors. Here, the analysis of the factors determining efficient nanoparticle targeting and therapy, various parameters such as types of targeting molecules, nanoparticle type, size, zeta potential, dose, and the circulation time are given. In addition, the important aspects such as how active targeting of nanoparticles alters biodistribution and how non-specific organ uptake influences tumor accumulation of the targeted nanoformulations are discussed. The analysis reveals that an increase in tumor accumulation of targeted nanoparticles is accompanied by a decrease in their uptake by the spleen. There is no association between targeting-induced changes of nanoparticle concentrations in tumors and other organs. The correlation between uptake in tumors and depletion in the spleen is significant for mice with intact immune systems in contrast to nude mice. Noticeably, modulation of splenic and tumor accumulation depends on the targeting molecules and nanoparticle type. The median survival increases with the targeting-induced nanoparticle accumulation in tumors; moreover, combinatorial targeting of nanoparticle drugs demonstrates higher treatment efficiencies. Results of the comprehensive analysis show optimal strategies to enhance the efficiency of actively targeted nanoparticle-based medicines.
主动靶向纳米颗粒到肿瘤是纳米医学中发展最快的课题之一。通常,这种策略涉及将癌症靶向生物分子添加到纳米颗粒中,并且该主题的研究主要集中在这些制剂在肿瘤中的定位上。在这里,分析了决定高效纳米颗粒靶向和治疗的因素,给出了各种参数,如靶向分子的类型、纳米颗粒的类型、大小、Zeta 电位、剂量和循环时间。此外,还讨论了主动靶向纳米颗粒如何改变生物分布以及非特异性器官摄取如何影响靶向纳米制剂在肿瘤中的积累等重要方面。分析表明,靶向纳米颗粒在肿瘤中的积累增加伴随着其在脾脏中的摄取减少。在免疫系统完整的小鼠中,与裸鼠相比,肿瘤和其他器官中纳米颗粒浓度的靶向诱导变化之间没有关联。在免疫系统完整的小鼠中,摄取与脾脏耗竭之间的相关性显著,而在裸鼠中则不显著。值得注意的是,脾脏和肿瘤积累的调节取决于靶向分子和纳米颗粒类型。中位生存期随肿瘤中靶向诱导的纳米颗粒积累而增加;此外,组合靶向纳米药物显示出更高的治疗效率。综合分析的结果显示了增强主动靶向基于纳米颗粒的药物效率的最佳策略。
Eur J Pharm Biopharm. 2015-6
Curr Med Chem. 2018
Nanomedicine (Lond). 2019-7-12
Future Med Chem. 2015-8
Adv Drug Deliv Rev. 2013-7-21
ACS Appl Mater Interfaces. 2021-10-27
Methods Mol Biol. 2017
MedComm (2020). 2025-5-19
Int J Mol Sci. 2022-12-21
Adv Ther (Weinh). 2019-1
Nanomaterials (Basel). 2021-11-10
Pharmaceutics. 2021-11-14
ACS Nano. 2021-7-27
J Control Release. 2021-2-10
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021-3
J Control Release. 2020-10-10