Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, 00185 Rome, Italy.
Super Computing Applications and Innovation, CINECA, 00185 Rome, Italy.
Biomolecules. 2021 Apr 12;11(4):567. doi: 10.3390/biom11040567.
The conformational state of the activation loop (A-loop) is pivotal for the activity of most protein kinases. Hence, the characterization of the conformational dynamics of the A-loop is important to increase our understanding of the molecular processes related to diseases and to support the discovery of small molecule kinase inhibitors. Here, we carry out a combination of molecular dynamics (MD) and essential dynamics (ED) analyses to fully map the effects of phosphorylation, ADP, and conformation disrupting (CD) inhibitors (i.e., CD532 and MLN8054) on the dynamics of the A-loop of Aurora-A. MD revealed that the stability of the A-loop in an open conformation is enhanced by single phospho-Thr-288, while paradoxically, the presence of a second phosphorylation at Thr-287 decreases such stability and renders the A-loop more fluctuant in time and space. Moreover, we found that this post-translational modification has a significant effect on the direction of the A-loop motions. ED analysis suggests that the presence of the phosphate moiety induces the dynamics of Aurora-A to sample two distinct energy minima, instead of a single large minimum, as in unphosphorylated Aurora-A states. This observation indicates that the conformational distributions of Aurora-A with both single and double phospho-threonine modifications are remarkably different from the unphosphorylated state. In the closed states, binding of CD532 and MLN8054 inhibitors has the effect of increasing the distance of the N- and C-lobes of the kinase domain of Aurora-A, and the angle analysis between those two lobes during MD simulations showed that the N- and C-lobes are kept more open in presence of CD532, compared to MLN8054. As the A-loop is a common feature of Aurora protein kinases, our studies provide a general description of the conformational dynamics of this structure upon phosphorylation and different ligands binding.
激活环(A 环)的构象状态对大多数蛋白激酶的活性至关重要。因此,对 A 环构象动力学的特征描述对于增加我们对与疾病相关的分子过程的理解以及支持小分子激酶抑制剂的发现非常重要。在这里,我们结合分子动力学(MD)和基本动力学(ED)分析,全面描绘了磷酸化、ADP 和构象破坏(CD)抑制剂(即 CD532 和 MLN8054)对 Aurora-A 的 A 环动力学的影响。MD 揭示了单磷酸化 Thr-288 增强了 A 环在开放构象下的稳定性,而矛盾的是,第二个磷酸化 Thr-287 的存在降低了这种稳定性,使 A 环在时间和空间上更加波动。此外,我们发现这种翻译后修饰对 A 环运动的方向有显著影响。ED 分析表明,磷酸部分的存在诱导 Aurora-A 的动力学来采样两个不同的能量最小值,而不是像未磷酸化的 Aurora-A 状态那样只有一个大的最小值。这一观察结果表明,具有单磷酸化和双磷酸化 Thr 修饰的 Aurora-A 的构象分布与未磷酸化状态显著不同。在封闭状态下,CD532 和 MLN8054 抑制剂的结合增加了 Aurora-A 的激酶结构域的 N 和 C 结构域之间的距离,并且在 MD 模拟过程中这两个结构域之间的角度分析表明,与 MLN8054 相比,在 CD532 存在下,N 和 C 结构域保持更开放。由于 A 环是 Aurora 蛋白激酶的共同特征,我们的研究提供了该结构在磷酸化和不同配体结合时构象动力学的一般描述。