Suppr超能文献

通过高斯加速分子动力学模拟破解 Janus 激酶 2 抑制的分子舞蹈:动态奥德赛。

Deciphering the molecular choreography of Janus kinase 2 inhibition via Gaussian accelerated molecular dynamics simulations: a dynamic odyssey.

机构信息

Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, MP, 453552, India.

Theoretical and Computational Biophysics Group, Beckman Institute for Advanced Science and Technology, NIH Resource for Macromolecular Modeling and Visualization, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.

出版信息

J Comput Aided Mol Des. 2024 Feb 7;38(1):8. doi: 10.1007/s10822-023-00548-8.

Abstract

The Janus kinases (JAK) are crucial targets in drug development for several diseases. However, accounting for the impact of possible structural rearrangements on the binding of different kinase inhibitors is complicated by the extensive conformational variability of their catalytic kinase domain (KD). The dynamic KD contains mainly four prominent mobile structural motifs: the phosphate-binding loop (P-loop), the αC-helix within the N-lobe, the Asp-Phe-Gly (DFG) motif, and the activation loop (A-loop) within the C-lobe. These distinct structural orientations imply a complex signal transmission path for regulating the A-loop's flexibility and conformational preference for optimal JAK function. Nevertheless, the precise dynamical features of the JAK induced by different types of inhibitors still remain elusive. We performed comparative, microsecond-long, Gaussian accelerated molecular dynamics simulations in triplicate of three phosphorylated JAK2 systems: the KD alone, type-I ATP-competitive inhibitor (CI) bound KD in the catalytically active DFG-in conformation, and the type-II inhibitor (AI) bound KD in the catalytically inactive DFG-out conformation. Our results indicate significant conformational variations observed in the A-loop and αC helix motions upon inhibitor binding. Our studies also reveal that the DFG-out inactive conformation is characterized by the closed A-loop rearrangement, open catalytic cleft of N and C-lobe, the outward movement of the αC helix, and open P-loop states. Moreover, the outward positioning of the αC helix impacts the hallmark salt bridge formation between Lys882 and Glu898 in an inactive conformation. Finally, we compared their ligand binding poses and free energy by the MM/PBSA approach. The free energy calculations suggested that the AI's binding affinity is higher than CI against JAK2 due to an increased favorable contribution from the total non-polar interactions and the involvement of the αC helix. Overall, our study provides the structural and energetic insights crucial for developing more promising type I/II JAK2 inhibitors for treating JAK-related diseases.

摘要

Janus 激酶(JAK)是几种疾病药物开发的关键靶点。然而,由于其催化激酶结构域(KD)的构象可变性很大,要考虑到可能的结构重排对不同激酶抑制剂结合的影响,这是很复杂的。动态 KD 主要包含四个突出的移动结构基序:磷酸结合环(P 环)、N lobe 内的αC 螺旋、天冬氨酸-苯丙氨酸-甘氨酸(DFG)基序和 C lobe 内的激活环(A 环)。这些不同的结构取向意味着存在一个复杂的信号传递路径,用于调节 A 环的灵活性和构象偏好,以实现最佳的 JAK 功能。然而,不同类型抑制剂诱导的 JAK 的精确动力学特征仍然难以捉摸。我们对三种磷酸化 JAK2 系统进行了三次比较、微秒长、高斯加速分子动力学模拟:KD 本身、I 型 ATP 竞争性抑制剂(CI)结合 KD 时处于催化活性 DFG-in 构象、以及 II 型抑制剂(AI)结合 KD 时处于催化失活的 DFG-out 构象。我们的结果表明,抑制剂结合时 A 环和αC 螺旋运动观察到明显的构象变化。我们的研究还表明,DFG-out 失活构象的特征是 A 环的封闭重排、N 和 C lobe 的催化裂缝打开、αC 螺旋的向外运动以及 P 环的打开状态。此外,αC 螺旋的向外定位会影响失活构象中 Lys882 和 Glu898 之间标志性盐桥的形成。最后,我们通过 MM/PBSA 方法比较了它们的配体结合构象和自由能。自由能计算表明,由于总非极性相互作用的有利贡献增加以及αC 螺旋的参与,AI 的结合亲和力高于 CI 与 JAK2 的结合亲和力。总的来说,我们的研究为开发更有前途的 I/II 型 JAK2 抑制剂治疗 JAK 相关疾病提供了结构和能量方面的重要见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验