Pinski Francis J
Department of Physics, University of Cincinnati, Cincinnati, OH 45221, USA.
Entropy (Basel). 2021 Apr 22;23(5):499. doi: 10.3390/e23050499.
To sample from complex, high-dimensional distributions, one may choose algorithms based on the Hybrid Monte Carlo (HMC) method. HMC-based algorithms generate nonlocal moves alleviating diffusive behavior. Here, I build on an already defined HMC framework, hybrid Monte Carlo on Hilbert spaces (Beskos, et al. 2011), that provides finite-dimensional approximations of measures π, which have density with respect to a Gaussian measure on an infinite-dimensional Hilbert (path) space. In all HMC algorithms, one has some freedom to choose the mass operator. The novel feature of the algorithm described in this article lies in the choice of this operator. This new choice defines a Markov Chain Monte Carlo (MCMC) method that is well defined on the Hilbert space itself. As before, the algorithm described herein uses an enlarged phase space Π having the target π as a marginal, together with a Hamiltonian flow that preserves Π. In the previous work, the authors explored a method where the phase space π was augmented with Brownian bridges. With this new choice, π is augmented by Ornstein-Uhlenbeck (OU) bridges. The covariance of Brownian bridges grows with its length, which has negative effects on the acceptance rate in the MCMC method. This contrasts with the covariance of OU bridges, which is independent of the path length. The ingredients of the new algorithm include the definition of the mass operator, the equations for the Hamiltonian flow, the (approximate) numerical integration of the evolution equations, and finally, the Metropolis-Hastings acceptance rule. Taken together, these constitute a robust method for sampling the target distribution in an almost dimension-free manner. The behavior of this novel algorithm is demonstrated by computer experiments for a particle moving in two dimensions, between two free-energy basins separated by an entropic barrier.
为了从复杂的高维分布中进行采样,可以选择基于混合蒙特卡罗(HMC)方法的算法。基于HMC的算法会生成非局部移动,从而减轻扩散行为。在此,我基于一个已经定义好的HMC框架,即希尔伯特空间上的混合蒙特卡罗方法(Beskos等人,2011年),该框架提供了测度π的有限维近似,π相对于无限维希尔伯特(路径)空间上的高斯测度具有密度。在所有HMC算法中,人们在选择质量算子方面有一定的自由度。本文所描述算法的新颖之处在于该算子的选择。这种新的选择定义了一种在希尔伯特空间本身定义良好的马尔可夫链蒙特卡罗(MCMC)方法。和以前一样,本文所描述的算法使用一个扩大的相空间Π,其边际为目标π,以及一个保持Π的哈密顿流。在之前的工作中,作者探索了一种用布朗桥增强相空间π的方法。通过这种新的选择,π由奥恩斯坦 - 乌伦贝克(OU)桥增强。布朗桥的协方差随其长度增长,这对MCMC方法中的接受率有负面影响。这与OU桥的协方差形成对比,OU桥的协方差与路径长度无关。新算法的要素包括质量算子的定义、哈密顿流的方程、演化方程的(近似)数值积分,以及最后,梅特罗波利斯 - 黑斯廷斯接受规则。综上所述,这些构成了一种以几乎无维度的方式对目标分布进行采样的稳健方法。通过计算机实验展示了这种新颖算法对于在二维中运动的粒子在由熵垒分隔的两个自由能盆地之间的行为。