Pinski Francis J
Department of Physics, University of Cincinnati, Cincinnati, OH 45221, USA.
Entropy (Basel). 2025 May 31;27(6):594. doi: 10.3390/e27060594.
Sometimes, limits can be singular, implying that they take on different values depending on the order of arithmetic operations. In other words, the limit map lacks commutativity. While all such limits are mathematically valid, only one can be the physical limit. The change of measure for Brownian processes illustrates this phenomenon. A substantial body of elegant mathematics centered around continuous-time Brownian processes has been embraced by the physics community to investigate the nonequilibrium and equilibrium thermodynamics of systems composed of atoms and molecules. In this paper, we derive the continuous-time limit of discrete-time Brownian dynamics, specifically focusing on the change of measure. We demonstrate that this result yields the physical limit that differs from the commonly used expression. Consequently, the concepts of "the most probable path", "minimum thermodynamic action", and "the small-noise limit" are unphysical mathematical artifacts.
有时,极限可能是奇异的,这意味着它们会根据算术运算的顺序呈现不同的值。换句话说,极限映射缺乏交换性。虽然所有这些极限在数学上都是有效的,但只有一个可以是物理极限。布朗过程的测度变化就说明了这一现象。围绕连续时间布朗过程发展起来的大量优美数学理论已被物理学界采用,用于研究由原子和分子组成的系统的非平衡和平衡热力学。在本文中,我们推导离散时间布朗动力学的连续时间极限,特别关注测度的变化。我们证明,这个结果产生的物理极限与常用表达式不同。因此,“最可能路径”“最小热力学作用”和“小噪声极限”等概念是不符合物理实际的数学虚构。